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Abstract
By 2050, 68% of the world’s population and 90% of the UK’s population are estimated to be living
in urban areas. It is widely acknowledged that urban areas tend to be warmer than rural areas (the
urban heat island (UHI) effect), and that increased summer temperatures increase morbidity and
mortality. It is therefore important to know how the UHI intensity will change in the future. Recent
work has used observed daily UHI-temperature relationships to suggest that the UHI intensity may
decrease under warming temperatures. Here we analyse the ability of the regional UK Climate
Projections, UKCP18-regional, to model the summer nighttime UHI intensity of ten UK cities.
When compared to HadUK-Grid observational data, we find that the model accurately simulates
both the mean magnitude of the UHI intensities and the daily relationship between urban and
rural temperature. In particular, in 9 of the 10 cities, the model and observational data both show a
decrease in UHI intensity with warmer temperature over the 1980–2020 period analysed. We then
analyse the correlation between the projected future UHI intensities using UKCP18-regional and
those inferred from the historical daily UHI-temperature relationships. We find that this
relationship is not statistically significant and that the model-projected change in UHI intensity is
greater than the change inferred from the historical relationship for all cities analysed. We conclude
that using short-term variability to predict future UHI change, as proposed by some recent work,
may not be appropriate. Our results motivate further research to understand processes impacting
UHI changes on different timescales and in different regions.

1. Introduction

Howard (1833) was the first scientist to study the
urban heat island (UHI) effect in the UK. Since his
discovery in 1833, we have been aware that urban cit-
ies can be several degrees warmer than the surround-
ing countryside (Wilby et al 2008). The age of urb-
anisation meant the formation of large cities, where
anthropogenic activity is concentrated (Dincer and
Zamfirescu 2014). By 2050, it is estimated that 68%
of the world’s population will be living in an urban
area (United Nations 2019). Compared to their rural
surroundings, urban areas have a higher temperature
due to anthropogenic alterations of land surfaces, and

a large amount of energy use and the consequential
generation of excess waste heat.

A number of factors influence the intensity of
the UHI, i.e. the temperature difference between an
urban and a rural site, in each city (Oke et al 1987,
Shahmohamadi et al 2010). Some of these include:

(1) Non-evaporative and impermeable surfaces, due
to their high thermal conductivity, heat capacity
and low albedo (Gartland 2008, Schlünzen and
Bohnenstengel 2016).

(2) Lack of vegetation, leading to a higher thermal
inertia, lower albedo, and a reduction in evapo-
transpiration (Reed 2010).
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(3) Complex urban geometry, which traps heat and
causes a decrease in wind speeds in urban areas.
This leads to increased warm, stagnant air and
absorption of solar radiation and less evaporat-
ive cooling (Unger 2004, Chen et al 2012).

(4) Anthropogenic heat from cooling and heat-
ing buildings, lighting, transport and industrial
factories, which heats cities through conduction,
convection, and radiation (Reed 2010).

An increase in waste heat due to these anthro-
pogenic processes is caused by an increase in energy
use (Oke 1987, Akbari et al 2005), which can change
depending on the time of day or year (Ohashi et al
2007). Currently, around 86% of the nighttime UHI
intensity has been shown to be caused by anthropo-
genic heat. This value decreases to 36% in the daytime
(Ryu and Baik 2012).

Studies have shown, using a variety of methods,
that the frequency and intensity of heatwaves are pre-
dicted to increase due to climate change (Perkins et al
2012, Christidis et al 2015, IPCC 2021). It is also
known that high temperatures have a direct effect
on health and mortality (Linares et al 2015). For
example, the 2003 European heatwave was associated
with between 20 000 and 70 000 deaths, depending on
the source (Met Office; Robine et al 2008). Heatwaves
affect the young, the elderly and those with respirat-
ory and cardiorespiratory diseases in particular, and
amplify mortality in these groups (D’Ippoliti et al
2010; Arbuthnott and Hajat 2017).

A positive UHI intensity trend on top of a warm-
ing climate, therefore, is likely to execabate the health
risk associated with heat. The nighttime effects of
UHIs have been found to be particularly damaging
during a heat wave, as urban residents are subject to
higher temperatures than rural residents (Loughnan
et al 2013), with higher death rates shown in urban
areas (Pyrgou and Santamouris 2018). As such, night-
time UHI is the focus of this study.

There have been a number of studies aim-
ing to quantify changes in urban climates under
future climatic change (Oleson et al 2011, McCarthy
et al 2012). Lo et al (2020) used the U.K. Climate
Projections (UKCP18-regional) to estimate future
trends in summer daytime and nighttime urban and
rural temperatures for the ten largest UK cities from
1981 to 2079. Using the 12 km climate model simu-
lations, Lo et al found that the UHI intensity is set
to increase rapidly during the nighttime in particu-
lar. They estimate an overall increase in the night-
time UHI intensity by 0.01 ◦C–0.05 ◦C every decade
in all cities measured (Lo et al 2020). This result may,
however, be sensitive to model configuration; a more
recent study using high resolution 2.2 km simulations
(UKCP18-local) found smaller trends in nighttime
UHI intensities for the UK (Keat et al 2021).

A contrasting approach to infer future UHI
changes can be taken using observational data. Scott
et al (2018) compared the daily maximum and min-
imum urban and nearby rural temperatures of 54 cit-
ies in the US, using meteorological station data from
2000 to 2015. They found that, on daily timescales,
warmer temperatures are associated with a reduced
UHI for the majority of cities. Using this relationship,
they proposed that as the climate warms, the UHI
intensity of these cities may decrease.

This study has two main goals: (a) to apply the
method of Scott et al (2018), in studying the rela-
tionship between UHI intensity and temperature in
observational data for UK cities; and (b) to determ-
ine whether this historical temperature dependence
of the UHI can be used to predict future changes in
UHI magnitude under climate change. Throughout,
we focus on the summer nighttime UHI.

2. Methods

2.1. HadUK-Grid
HadUK-Grid is a collection of gridded climate vari-
ables formed as a result of UK land near-surface
observations (Hollis et al 2019). The dataset covers a
large time period, from 1862 to the present day, how-
ever, the start time depends on both the climatic vari-
able and temporal resolution chosen. The HadUK-
Grid dataset is provided at 1 km, 12 km, 25 km, and
60 km resolutions.

In this study, we aim to investigate changes in
summer nighttime UHI intensities based on daily
minimumair temperatures (tasmin) in June, July, and
August (JJA). Therefore, we use the 1980–2020 JJA
daily tasmin data from HadUK-Grid at 12 km resol-
ution. This ensures we can directly compare against
UKCP18-regional, which is also at 12 km resolution,
and for bias correction.

2.2. UKCP18-regional
The regional climate model projections were pro-
duced as part of the UK Climate Projection 2018
project (Murphy et al 2018). These simulations
cover Europe over a 100 year period, from 1980 to
2080. UKCP18-regional are constituted of 12 per-
turbed parameter ensemble (PPE) members from
the regional atmospheric model HadREM3-GA7-05,
at 12 km horizontal resolution. These PPE simula-
tions are driven by the Met Office global coupled
atmosphere-ocean model ensemble, HadGEM3-
GC3.05-PPE (Murphy et al 2018). Specifically, each
regional simulation is driven at its lateral boundar-
ies with the surface pressure, wind, temperature and
moisture output, as well as prescribed sea surface
temperature (SST) and sea-ice cover fields from the
corresponding GC3.05-PPE member.

The 12 PPE members were selected from a lar-
ger initial ensemble to provide a range of plausible
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Figure 1. (Left to right) OSGB map layered with urban fraction of England and Wales. The coloured points represent the 10 UK
cities that are the focus of this study; 5× 5 grid centred on the projected x and y coordinates of London, transformed from its
OSGB coordinates (−0.128 W, 51.507 N). Red and white boxes show highest and lowest urban fractions respectively.

simulations. The selection process included assess-
ments against observed and simulated (Coupled
Model Intercomparison Project Phase 5; CMIP5
(Taylor et al 2012)) historical atlantic meridional
overturning circulation strength, SSTs, trends in aver-
age Northern Hemisphere surface air temperature,
and biases in winter and summer European climato-
logical averages of surface air temperature and precip-
itation (Murphy et al 2018).

Comparedwith observedUK-averaged surface air
temperature in 1981–2000, the regional PPE range
encompasses the observations in all months except
April and May (Murphy et al 2018). In summer hot
extremes (99th percentile of diurnal mean temper-
atures) in 1981–2000, the regional PPE biases warm
in London and Birmingham and biases cool in other
places in the UK, although this warm bias represents
a reduced bias compared to GCM3.05-PPE.

Projections from 2005 onwards were based on the
high-emissions RCP8.5 scenario (Moss et al 2010).
This scenario was chosen so as to more easily identify
the risks posed due to climate change. UKCP18-
regional projections are made up of 12 PPE members
at 12 km horizontal resolution. These PPE members
are from the regional atmospheric model HadREM3-
GA7-05 and are driven by their corresponding global
simulation, HadGEM3-GC3.05 (Murphy et al 2018).
The 12 PPE members make up an ensemble, which
are then used to estimate a range of projections.

UKCP18-regional represents land surface types
using the Joint UK Land Environment Simulator
(JULES) tiling system, whereby one of nine surface

types can be applied on a sub grid-scale. An aggreg-
ated surface energy balance is then calculated from
these fluxes (Best et al 2011). This one-tile urban
scheme uses bulk representation for urban areas,
modifying parameters required to model an urban
surface. These include a reduced albedo and increased
heat storage capacity, however, does not include waste
heat generation.

2.3. UHI intensity calculation
The urban fraction of England andWales was overlaid
with the boundaries of the ten most populous built-
up areas in England, as visualised in figure 1. The grid
boxes with the highest urban fractions were mainly
located in the ten most populous built-up areas in
England and Wales (Lo et al 2020; their figure 1).
The urban fractions do not change over time in the
simulations; therefore, any UHI trends simulated are
due to climate forcing, not changes in urbanisation.
The built-up areas were defined by the Office for
National Statistics (2013). In this paper we study the
UHI effect in these ten cities: Nottingham, Leeds,
Birmingham, Bristol, Southampton, Manchester,
Sheffield, Liverpool, Newcastle and London.

A 5 × 5 grid box, centred on each of the ten
chosen cities, was plotted on an OSGB map layered
with their urban fractions, as demonstrated in figure 1
for London. From this, the two grid boxes with the
highest urban fractions (seen highlighted in red) and
two grid boxes with the lowest urban fractions (seen
highlighted in white) were selected. These represent
the urban and rural parts of the city and surrounding
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area. The method outlined follows that from Lo
et al (2020), which demonstrated that this definition
was adequate to distinguish between urban (urban
fractions ⩾∼0.2) and rural (fractions < 0.07) areas
around all major cities in England. Although Lo et al
(2020) noted that this definition may be underestim-
ating UHIs in the cities, changing the number of grids
to 1 or 6 did not change their main results, so we do
not repeat this sensitivity analysis here.

The urban temperature, Tu, and rural temper-
ature, Tr, are calculated as the average temperature
across the two urban and rural grid boxes respectively.
We have taken UHI intensity to be ‘the near-surface’
air temperature (at 1.5 m) difference between urban
and rural grid boxes in the same area, as defined by Lo
et al (2020). Therefore, the UHI intensity of a given
city (◦C) is assumed to be given by Tu −Tr.

3. Results

3.1. Difference betweenmodel and observations
We first aimed to investigate how well UKCP-18
regional can simulate the climate, particularly the
urban and rural temperatures. To do this, we com-
pared the relationship between theminimumdailyTu

and minimum daily Tr using both model and obser-
vational data. As seen in figure 2, the left column
shows this relationship using UKCP18-regional sim-
ulations whereas the right column uses HadUK-Grid
observations. This is shown for London, Liverpool
and Manchester from top to bottom respectively,
from 1980 to 2020. Liverpool and Manchester are
chosen as their regression slopes using UKCP18-
regional are the smallest and largest respectively,
among the ten cities, however, this relationship is
shown for all analysed UK cities in figure S1 (supple-
mentary information). The relationship between Tu

and Tr can tell us the magnitude of the UHI intensity.
Specifically, the gradient of the least squares regres-
sion line gives the relationship betweenUHI and tem-
perature, while comparing the regression line to the
1:1 line, gives the UHI magnitude.

In all of the subpanels shown, the regression line
and the majority of the individual points are above
the 1:1 line,meaning that theUHI intensity is positive
for almost all summer nights. The greater the differ-
ence between the lines, the greater the UHI intensity
in that particular city. Notably, the slope of the regres-
sion line for each city, for both the observational data
and model, is less than the 1:1 line. This indicates a
reduction in UHI intensity with warmer temperat-
ures, in line with the results of Scott et al (2018) for
US cities.

We validated the simulations against observa-
tional data by comparing the gradient of the regres-
sion line using both HadUK-Grid observational data
and UKCP18-regional model simulations. We found
that the gradients from the model and observations
were very similar for Manchester and Liverpool, and

slightly less so for London (see comparison of all cities
in figure S2).

3.2. Difference in UHI between cities
To further validate the model simulations of UHI,
we now show mean UHI intensity, and correspond-
ing standard error, obtained from UKCP18-regional
and HadUK-Grid from 1980 to 2020 for each city
(figure 3). Most cities (7/10) have median UHI
intensities above 0 ◦C for both model and obser-
vations. Three of the cities (Nottingham, Leeds and
Birmingham) have median UHI intensities less than
0 ◦C when using model simulations. For all of these
cases, the median UHI intensities using observational
data are greater than 0 ◦C.

London and Birmingham are cities with a partic-
ularly large 95% confidence interval and interquartile
range, whereas Bristol has a smaller spread of results.
Out of the ten cities, six have an average UHI intens-
ity larger in the observational data than in the model
simulations.

We found a strong, significant correlation
between the 1980 and 2020 UHI intensities obtained
from HadUK-Grid observational data, and those
estimated byUKCP18-regional simulations (r= 0.85,
p= 0.002, assumingmean UHImagnitudes are inde-
pendent). Overall, theUHI intensities estimated from
model simulations are very closely related to those
from HadUK-Grid observational data. This gives us
confidence that the UKCP18-regional simulations are
accurately capturing the magnitude of the UHI effect
for UK cities.

3.3. Future change in UHI intensity
We next determine whether the historical temper-
ature dependence of the UHI can be used to pre-
dict future changes in UHI under climate change.
We show the change in UHI intensity as the differ-
ence between the average of 1980–2000 and 2060–
2080 using UKCP18-regional simulations against the
predicted change in UHI intensity from the model’s
historical relationship (figure 4).

This predicted change in UHI was calculated as
follows:

UHI= Tu −Tr = (m− 1)Tr + c, (1)

where Tu =mTr + c. Hence

∆UHI=∆T(m− 1) . (2)

Here the slope m represents the change in Tu per
increase in Tr, as determined through a total least-
squares linear regression shown in figure 2,∆T is the
difference in rural temperatures between 1980 and
2080, and c is a constant determined by the linear
regression. In figure 4, the different coloured points
indicate each of the ten chosen UK cities, defined in
the legend to the right of the graph. The trendline is
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Figure 2. Left column: daily minimum Tr versus Tu for data from JJA 1980–2020 for (a) London, (c) Liverpool and
(e) Manchester using HadUK-Grid observational data. Right column: daily minimum Tr versus Tu for data from JJA 1980–2020
for the same three cities using UKCP18-regional simulations. The black line shows the total least squares regression, and the blue
line shows the 1:1 line.

shown as a black dotted line, which can be compared
to the 1:1 line, shown as a solid blue line.

We then assessed the statistical significance of the
proposed correlation using the Pearson correlation
coefficient. We obtain an r-value of 0.47, indicating
a slightly positive correlation. The r2 value is 0.22,
indicating that around 20%of the spread in themodel
UHI intensity change is explained by the spread of the
predicted UHI intensity using historical simulations.
We assess the statistical significance of this correla-
tion by calculating the p-value, which we found to be
0.18. The result is therefore not statistically signific-
ant. When using Spearman’s rank correlation coeffi-
cient, we find r= 0.66, p= 0.04, which does indicate a
statistically significant (at the 5% level), positive cor-
relation between the ordering of the cities in the two
methods of predicting future UHI intensity.

4. Discussion

When examining the sensitivity of how Tu changes
with Tr on daily timescales, we found that, for the

majority of the cities (9/10), the slope is less than
1, indicating that Tu and Tr become more similar
(and therefore the UHI magnitude decreases) as Tr

increases. As the average slope of the ten cities indic-
ates that Tu increases by about 0.95 ◦C for every 1 ◦C
increase in Tr. This result broadly agrees with that
of Scott et al (2018), who found that in 38 of the
54 US cities sampled, the UHI intensity decreased
with increasing rural temperatures, with an average
Tu increase of about 0.88 ◦C for every 1 ◦C increase
in Tr. Scott et al (2018) suggested that this decrease
in UHI intensity could be due to changing moisture
levels in the soil: as the temperatures get warmer, the
rural areas get drier due to evapotranspiration, this
causes themoisture levels of the urban and rural areas
to become more similar, as in turn do their respective
temperatures.

A key motivation of our study is to test whether
the same mechanism can be expected to operate on
longer time scales, such that UHI intensities would
decrease under global warming. To do so, we used
UKCP18-regional simulations which we showed to
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Figure 3. Comparison of 1980–2020 JJA nighttime mean UHI intensity between HadUK-Grid data and UKCP18-regional
simulations for ten UK cities. For the lines in the box and whisker plot: error bars are the 95% confidence interval, the bottom and
top of the box are the 25th and 75th percentiles, the line inside the box is the median.

Figure 4. Change in UHI intensity using UKCP18-regional simulations from 2020 to 2080 versus predicted change in UHI
intensity using historical climate model simulations. The x-axis error bars represent the uncertainty due to our linear regression
slope, seen in figure 2. The y-axis error bars represent the uncertainty from the modelled change in future UHI intensity. Black
dashed line is a total least-squares linear regression, blue line is the 1:1 line.

accurately capture historical mean UK UHI intens-
ities. UKCP-18 regional also showed a decrease UHI
intensity with warmer temperatures on daily time
scales over the historical period for all cities, in agree-
ment with the observational results. We then invest-
igated whether we could use this daily variability in
the historical simulations to predict the future climate
change signal. While the daily historical relationship
suggests a decreasing UHI intensity under a warmer
climate, the climate model simulations showed that
the UHI intensity will increase for 4/10 of the cities

and decrease for the other 6/10. There is a slight cor-
relation between the historically-inferredUHI change
and the simulated UHI change (r = 0.47), how-
ever it was found to not be statistically significant
(p = 0.18). When using UKCP18-regional to model
the UHI intensity trends from 1981 to 2079, Lo et al
(2020) found all ten chosen UK cities to have a posit-
ive UHI intensity trend. Increasing the sample size of
the study to include more UK cities would be benefi-
cial in order to get a more accurate representation of
the correlation. It is clear that the simulated change
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in UHI intensity using UKCP18-regional is consist-
ently larger than that inferred from historical simu-
lations. We conclude that using the observed short-
termUHI-T relationship does not necessarily imply a
reduction in UHI intensity under a warming climate,
as proposed by Scott et al (2018).

The reason for the systematic difference between
climate projections inferred from short-term variab-
ility and those derived from futuremodel simulations
warrants further investigation. UKCP18 simulations
show reductions in summer soil moisture over much
of the UK under climate change (Kay et al 2022); a
trend which, as proposed by Scott et al (2018), might
be expected to drive reductions in UHI. Hence we
suggest that another mechanism must be partially
cancelling this by driving increased UHI within these
simulations. A detailed heat budget analysis is bey-
ond the scope of this paper, but possible candidates
include nighttime cloud cover changes, or increasing
humidity.

In this study, we have used the newest gener-
ation of UKCP to estimate future changes in UHI
intensities in the UK. Despite having many bene-
fits (Murphy et al 2018), UKCP18-regional does have
some drawbacks (Keat et al 2021). The regional cli-
mate model uses the JULES one-tile urban scheme to
represent urban areas (Best et al 2011). Compared to
a two-tiled scheme, such as the Met Office Reading
Urban Surface Exchange Scheme (MORUSES), the
UKCP18-regional does not represent urban areas as
well (Keat et al 2021). MORUSES uses two urban
tiles to represent the street canyon and roof facets
(Porson et al 2010a, 2010b). This means that it is
able to account for factors such as anthropogenic heat
emissions, something that is omitted from UKCP18-
regional (Keat et al 2021). As the climate warms in
the future, we expect there to be an increase in waste
heat generation (Bian 2020). Many commercial, res-
idential and transportation factors could contribute
to this, one example being an increase in air condi-
tioning usage.

There is also some potential for our results to be
model-sensitive. Lo et al (2020) compared the trends
in UHI intensity between UKCP18-regional and
three regional models from the European branch of
the Coordinated Regional Downscaling Experiment
(EURO-CORDEX; Jacob et al 2014) and found vary-
ing results depending on the city, time of day, and
model. The diversity of their results suggests that
considering other models in similar future work is
important.

5. Conclusions

We have investigated UK summer nighttime
UHI intensities using both HadUK-Grid observa-
tional data and UKCP18-regional climate model
simulations. We found that the climate model

accurately simulates both the mean UHI intensit-
ies of UK cities (correlation of UHI intensities: 0.85)
as well as the observed reduction of UHIwith increas-
ing temperature on short timescales, which was seen
for nine of the ten cities studied.

Turning to UHI projections under climate
change, we showed that simulated UHI intensity
changes are consistently more positive (towards
increasing UHI) than those inferred from the short-
term historical variability of the model. We therefore
conclude that caution is necessary if using the his-
torical record to infer future UHI changes, as has
been suggested by some recent studies. Our result are
important for further understanding how the mag-
nitude of theUHI intensity ofUK citiesmay change in
future and help motivate future work to understand
the mechanisms impacting the UHI-temperature
relationship on different timescales. Future work
might also consider the effects of changing urban-
isation, which was not included in the simulations
analysed here.

An increase in UHI intensity will increase the dis-
parity in heat-related health-risks between urban and
rural areas. However, both urban and rural temper-
atures are projected to rise in the future. Therefore,
even if the UHI intensity decreases in the future, there
is likewise an expected increased risk of mortality.
Reducing the variability and improving the accuracy
of the climate model simulations will greatly improve
our understanding of the measures needed to mitig-
ate heat-related mortality.
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