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ABSTRACT

Observations of time-varying thermal emission from brown dwarfs suggest that they have large-scale atmospheric circulation. The
magnitude of this variability ranges from a few per cent to tens of per cent, implying a range of sizes of atmospheric perturbations.
Periodograms of phase curves of the thermal emission reveal a range of peaks with different periods and widths, suggesting
different atmospheric flow speeds and directions. This implies a variety of atmospheric circulations in the different brown dwarfs
observed to date, but there is no general theoretical understanding of the circulation regimes these objects can support, and the
resulting sizes and velocities of their atmospheric features. We therefore use an idealized 2D shallow-water model of a brown
dwarf atmosphere to understand their potential large-scale circulation regimes. We non-dimensionalize the model to reduce the
number of input parameters to two non-dimensional numbers: the thermal Rossby number and the non-dimensional radiative
time-scale. This allows us to define a parameter space that bounds the entire range of brown dwarf behaviour possible in our
model. We analyse the resulting height, velocity, and potential vorticity fields in this parameter space, and simulate observed phase
curve and periodograms for comparison with real observations. We use our results to qualitatively define four circulation regimes,

which we hope will be useful for interpreting observations and for guiding simulations with more detailed physical models.

Key words: brown dwarfs — methods: numerical.

1 INTRODUCTION

The study of brown dwarfs has drawn a link between gaseous planets
and stars. Brown dwarfs are objects composed of hydrogen with
masses similar to or greater than giant planets, and less than stars.
They are thought to form in the way as stars, but do not have enough
mass for fusion to occur (Burrows et al. 2001). Their atmospheres
appear more similar to giant planets than stars, and observations
suggest that they have jets and surface features similar to giant
planets in our Solar system (Showman, Tan & Parmentier 2020).
They are self-luminous and have larger radii than most exoplanets
so are excellent targets for atmospheric observations.
Time-resolved observations have revealed variations in their
emitted flux, typically of a few percent but reaching up to tens
of percent (Robinson & Marley 2014; Artigau 2018; Zhou et al.
2022). Vos et al. (2022) found that photometric variability is
particularly common in young brown dwarfs in the L2-T4 range.
This compares to variability of a few per cent in optical emission for
Jupiter and Neptune as point sources, and tens of per cent for Jupiter
in the infrared (Artigau 2018). Idealized atmospheric models of
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brown dwarf atmospheres have produced similar variability to that
simulated for Jupiter (Showman 2007; Zhang & Showman 2014).
Variability is a key process in the atmosphere of the gas giants of
the Solar system, so it may also be a key observational window into
the atmospheric properties of brown dwarfs.

In this study, we simulate a suite of idealized models of brown
dwarf atmospheres, using a 2D ‘shallow-water’ model forced by
random perturbations. We aim to identify circulation regimes in the
entire parameter space of potential brown dwarf atmospheres, and to
link these directly to observable variability. Previous studies of brown
dwarf atmospheres used similar shallow-water models (Zhang &
Showman 2014) or 3D General Circulation Models (GCMs; Tan &
Showman 2021a, b; Tan 2022). Both types of model have been
extensively used with a range of complexities to model gaseous
exoplanets (Showman & Polvani 2011; Showman, Lewis & Fortney
2015). We chose the simple and computationally efficient shallow-
water model to investigate a large parameter space, to focus on
the overall dynamical regimes of the atmosphere rather than its
complex 3D behaviour, and to run models with high spatial and
time resolution.

We build on the approach of Zhang & Showman (2014) by
non-dimensionalizing the shallow-water model so that our results
encompass its entire range of plausible behaviour. The 2D shallow-
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water model has multiple parameters (radius, rotation rate, etc.),
making it difficult to simulate and understand the circulation regimes
in the resulting multidimensional parameter space. We therefore non-
dimensionalize our model so that it only depends on two parameters:
the thermal Rossby number and the non-dimensional radiative
time-scale (Wang et al. 2018). The non-dimensional model results
are identical for any simulations with the same non-dimensional
parameters. This allows us to identify circulation regimes of the
entire 2D parameter space which encompasses all of the possible
model results, up to constants of proportionality. We define plausible
ranges of each non-dimensional parameter based on the properties
of real brown dwarfs.

In Section 2, we review relevant work on brown dwarfs, focusing
on observations and simulations of variability. Section 3 describes the
shallow-water model that we use to simulate a suite of brown dwarf
atmospheres. We present the results from this model in Sections 4
and 5, plotting atmospheric properties and simulated observations
for the whole parameter space. Section 6 discusses the circulation
regimes identified by our results, revealing four regimes that have
different feature sizes, phase curve amplitudes, and flow speeds.
We discuss the limitations of our comparison with previous Hubble
Space Telescope (HST) and Spitzer Space Telescope observations,
some of which may have probed higher pressures than those we
model here, and suggest that mid-infrared observations with the MIRI
instrument James Webb Space Telescope (JWST) will be better suited
for comparison to our simplified model. We conclude that the 2D
model reveals a variety of large-scale circulation regimes that we
hope will be useful for interpreting observations and for guiding
more detailed modelling.

2 BROWN DWARF ATMOSPHERIC
VARIABILITY

Brown dwarfs have masses from a few times the mass of Jupiter
(My) up to roughly 80Mj, with radii similar to the radius of Jupiter
(Ry). They can be free-floating or orbit other bodies; in this study we
will model isolated brown dwarfs and will not consider the effects of
other bodies such as stars (Showman et al. 2020). Strongly irradiated
brown dwarfs like those modelled in Lee et al. (2020) behave more
like ‘hot Jupiter’ exoplanets. Brown dwarfs in binary systems may
still behave like isolated brown dwarfs if their external forcing is
weak compared to their internal temperature. Brown dwarfs are
characterized into L, T, and Y types corresponding to their spectral
features and temperature. These types span a range of temperatures
from <600 to >2100 K. Despite their high masses, they are all
more comparable to the giant planets of the Solar system than stars
(Showman et al. 2020), so we use a model similar to those used
previously for giant planets.

2.1 Observations of atmospheric variability

Atmospheric circulation may produce changes in an observable
field like temperature or albedo, which can be observed with time-
resolved measurements like thermal phase curves. Biller (2017)
reviewed time-resolved observations of brown dwarfs, describing
how surface inhomogeneities lead to variability in the observed light
curves. Observing this variability is more feasible for more rapidly
rotating objects because more rotations can be observed in a short
time, sampling the spatial frequencies of the surface pattern more
accurately. The thermal phase curve of a uniform brown dwarf with
no surface features would be flat as it rotates. Stationary surface
inhomogeneities due to temperature variations or clouds would

Shallow-water modelling of brown dwarfs 151

produce a variable phase curve, with a constant period at the rotation
period of the brown dwarf. Artigau et al. (2009) showed this for a
T-dwarf, where the shape of its phase curve varied with time but its
period was constant. This suggests that the inhomogeneities were
stationary in position but varied in size with time.

Artigau (2018) showed how the magnitude of this observed
variability can vary with wavelength, suggesting that the surface
inhomogeneity corresponds to variations in several different atmo-
spheric layers. This highlights how interpreting real observations
will be more complex than the simple one-layer simulations in this
study. For example, Yang et al. (2016) showed how light curves
measured at different wavelengths can be out of phase with each
other. This variation can present opportunities — Crossfield et al.
(2014) used multiwavelength time-domain observations to derive a
2D map of the cloud distribution on Luhman 16B, and suggested
that the dynamical time-scale of the atmosphere is approximately
one Earth day.

Atmospheric circulation has been inferred from observations of
time-resolved flux from planets in the Solar system. Simon et al.
(2016) showed how banded zonal jets lead to multiple shifted periods
in the periodograms of broad-band light curves of Neptune from the
Kepler space telescope. They used a zonal velocity profile from
Galperin & Read (2019) to estimate the latitude of the moving
feature of each peak, as the shift depends on the angular velocity
of the feature, which depends on both its velocity and latitude. Apai
et al. (2017) fitted infrared Spitzer Space Telescope observations of
several brown dwarfs with empirical models of varying surface flux,
based on local spots or zonal bands. These shapes were inspired by
similar morphologies on the giant planets of the Solar system like
those in Simon et al. (2016). They compared the periodogram of the
time-resolved thermal emission to the periodogram of light-curve
observations of Neptune from Simon et al. (2016), suggesting that
the brown dwarf’s periodogram had a similar broad peak due to
similar banded zonal jets.

Vos et al. (2020) measured variability like that in Apai et al.
(2017) for several low-gravity L dwarfs with Spitzer phase curves,
deriving periodograms and suggesting that variability was strongest
for objects viewed equator-on. Zhou et al. (2022) observed a late
L-type planetary-mass companion with extremely high variability.
They combined observations with HST at different epochs to find
a maximum flux variation of 33 percent, with a variety of strong
frequencies in the time-series flux. The variability could be repro-
duced by models based on zonally moving waves, stationary spots,
or combinations of both.

Determining the exact velocities corresponding to different peaks
in these observed periodograms requires knowledge of the rotation
period of a brown dwarf. This is difficult to determine from a thermal
phase curve as it may be affected by the motion of the part of the
atmosphere being observed. It can be roughly inferred from the phase
curve, such as in Apai, Nardiello & Bedin (2021) where the dominant
peak in the periodogram was used to measure the rotation period of
the brown dwarf Luhman 16B to be 5.28 hours. However, this peak
may be moved away from the true period by atmospheric dynamics,
and Apai et al. (2021) highlighted that the peak is broadened, which
they suggest could be due to banded jet streams. Zhou et al. (2022)
derived periodograms without a clearly dominant peak to ascribe
to a rotational period, suggesting strong large-scale motion beyond
variability due to stationary features on the rotating body.

Manjavacas et al. (2017) showed three peaks in the periodogram of
the broad-band phase curve of the L-dwarf LP261-75B. They found
a dominant period at 4.87 h which they suggest to be the rotation
period of the brown dwarf. They also found two smaller peaks
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at shorter periods, and suggested causes including heterogeneous
cloud coverage. Allers et al. (2020) measured the first true rotation
period of a brown dwarf from its radio emission. This was different
to the rotational period measured from its infrared emission, by
an amount corresponding to an eastward atmospheric motion of
600 £ 300 ms~!. These measurements of absolute velocities, and
the measurements of varying feature size and relative motion in
other studies, motivate our modelling of the circulation regimes of
brown dwarfs.

The photosphere at the wavelengths measured in a particular
observation varies according to the spectral type of the brown dwarf,
and can therefore lie within either or both of the convective and
stably stratified layers. In particular, near-infrared wavelengths are
expected to correspond partially or entirely to the convective layer.
Morley et al. (2014a) modelled Y-dwarfs and found that the 1 — 6 um
photosphere is entirely within the convective zone. Burningham
et al. (2017) found the near-infrared photosphere of two observed
L-dwarfs to be at similarly deep pressures, between 1 and 10 bar.
This is consistent with the modelling results of Phillips et al. (2020)
for L and T dwarfs, who modelled a convective zone up to 3 bars
that accounted for the majority of the near-infrared photosphere.
Tremblin et al. (2015) suggested an even higher convective zone
with a model of enhanced convection for Y and T dwarfs, which
would put the entire near-infrared photosphere within the convective
zone. HST observations with the WFC3 grism would almost certainly
correspond to a photosphere in this deeper region (Yang et al. 2016).

All these different approaches find that the average near-infrared
photosphere is partially or entirely below the stably stratified layer,
so our direct link between this modelled layer and the observed
phase curve is approximate for near-infrared wavelengths on average.
Observations in specific bands can correspond better to the layer
we simulate. For example, the Spitzer 3.6 and 4.5um channels
are near CHy and CO bands, respectively, as well as the water
vapour continuum, so should probe pressures between 0.1 and 1
bar corresponding to the stratified layer (Morley et al. 2014b). The
large-scale phase-curve variability in the Spitzer observations in
these channels (Yang et al. 2016; Apai et al. 2017; Vos et al. 2020,
2022) implies thermal emission affected by an active weather layer
supporting atmospheric dynamics, and would be difficult to explain
with a purely convective layer. This issue will hopefully be addressed
by time-series observations of brown dwarfs with the JWST MIRI
instrument in the mid-infrared, which should probe lower pressures
in more detail and correspond more directly to the expected stably
stratified weather layer.

2.2 Models of atmospheric dynamics

Showman et al. (2020) reviewed the atmospheric dynamics of brown
dwarfs and described their basic dynamical regimes as rotationally
dominated with Rossby numbers <<1. Showman & Kaspi (2013)
derived an analytical theory for the circulation of brown dwarfs,
predicting global horizontal wind speeds of 10-300 ms~'. Zhang &
Showman (2014) modelled the dynamical variability of brown dwarfs
using a shallow-water model with random small scale forcing,
varying the forcing strength and radiative time-scale. They found two
main regimes: one dominated by zonal jets and one dominated by
small-scale vortices. They suggested that the small deformation radii
of their simulations resulted in long-lived large-scale mid-latitude
vortices rather than strong zonal jets.

Showman, Tan & Zhang (2019) used a 3D model with small-scale
forcing, finding complex behaviour including a QBO-like circulation
and zonal jets. Tan & Showman (2021b) showed that a cloud feedback
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mechanism can produce small-scale forcing with similar effects to
those imposed by Zhang & Showman (2014). Tan & Showman
(2021a) ran simulations of a global model with this cloud-based
feedback mechanism. They varied the rotation period and the time-
scale of dynamical drag, and found varying zonal jets and equatorial
waves.

The atmospheric dynamics of simulated brown dwarfs have many
similarities to those of giant gaseous planets. For idealized shallow-
water models, the models and their outcomes are often identical or
separated only by the choice of numerical parameters. Cho & Polvani
(1996) showed the formation of banded jets and polar vortices in an
unforced Jupiter-like shallow-water model that was initialized from
turbulent flow. Showman (2007) used a similar model but forced it
by injecting random storms like the model of Zhang & Showman
(2014). They both showed the formation of similar banded jets and
vortices, which can be present at different latitudes on the planet
separated.

Brueshaber, Sayanagi & Dowling (2019) and Brueshaber &
Sayanagi (2021) used a shallow-water model with similar random
forcing to Zhang & Showman (2014) to investigate the formation
of polar vortices on the giant planets of the Solar system. They
modelled the polar region only, and varied parameters such as the
Burger number and forcing strength to find regions of the parameter
space that result in polar vortices. Their results were similar to those
of Scott (2011), who showed that individual cyclones injected to
a shallow-water model will migrate towards the pole if they have
sufficient potential vorticity relative to the pole. This means that
planets with stronger forcing and slower rotation rates will tend to
accumulate cyclonic vorticity at their poles and form polar vortices.

Scott & Polvani (2007) used a spectral forcing formulation for
a shallow-water model, injecting energy at small wavenumbers
instead of injecting energy with individual storms. They showed the
important effect of energy dissipation via either radiative relaxation,
Rayleigh drag, or numerical hyperdiffusion on the zonal jets and the
polar vortices. Scott & Polvani (2008) showed how a shallow-water
system can develop equatorial superrotation (eastward equatorial
flow) given appropriate radiative relaxation. This differed from the
above studies, which generally formed westward equatorial flow.

All these previous modelling studies of brown dwarfs and giant
planets identified zonal jets and vortices of varying size and position.
We aim to describe how these features vary over the entire plausible
parameter space of brown dwarf atmospheres in an idealized 2D
model.

3 SHALLOW-WATER MODELLING

We use a one-layer, 2D shallow-water model to simulate brown
dwarf atmospheres. As in Showman (2007) and Zhang & Showman
(2014), this model represents the stably stratified weather layer, on
top of a convective interior (Burrows, Sudarsky & Hubeny 2006).
The shallow layer corresponds to the atmospheric mass higher that a
given surface of constant potential density. This marks the boundary
to the deep convective layer which we do not model apart from the
forcing it applies to the stably stratified layer.

3.1 Dimensional model

The equations governing the shallow layer are (Vallis 2006):

Du —
oy VA Tk x<u=0. M
DY 4 yy.p= =P 4

Dt Trad
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In these equations & = (& +u- V) is the material derivative.
The variables are the velocity u, and the geopotential & = gh, where
g is the acceleration due to gravity and 4 is the height.

The model parameters are the equilibrium geopotential &, the
radiative time-scale .y, and the Coriolis parameter f = 2Qcos 6,
where the rotation rate is €2 and the latitude is 6. The radius a is also
a parameter via the spatial derivatives.

We solve these equations using the spectral dynamical core of the
GFDL Flexible Modelling System FMS! (Gordon & Stern 1982). We
use a resolution of T170 (with 512 longitude points and 256 latitude
points). This is equivalent to approximately 0.7° at the equator, as
used in Zhang & Showman (2014). The model applies a fourth-order
hyperdiffusion to the vorticity field with a strength set by a coefficient
V.

We follow Showman (2007), Zhang & Showman (2014), and
Brueshaber et al. (2019) and force the model with randomly located
‘storms’ corresponding to convective events. These storms add up to
produce a net tendency S in the geopotential field:

S:Z@L:ZSoexp[—“‘_ri'z—(t_ti)z R 2)

2 2
ot 7} T/

where i denotes each storm in a series of randomly generated
storms with time-scales 7, with constant intervals t;, separating
their times #;, which appear randomly over the surface of the sphere
with positions r;. We remove the overall tendency this adds to
the mean geopotential by applying a uniform forcing everywhere,
opposite to the total area-integrated tendency introduced by each
storm (Brueshaber et al. 2019):

() 1 o(d)
—_— =— —| dA. 3
0t lglobal 4 a? /Z or i )
This keeps the global mean value of @ fixed at @, which keeps
the Rossby deformation radius constant and avoids model instability
caused by the mean geopotential becoming too small or large. The
total model forcing S is then:

D) ()
S + Z TR )

Y

The model is damped by relaxation towards the equilibrium geopo-
tential ®y, representing the radiative cooling of the atmosphere. We
do not include the ‘R’ term used in Zhang & Showman (2014), which
represents the effect of transport between the modelled layer and the
deep layer on the zonal momentum. We choose to omit this term as it
is an additional physical forcing with unknown effects, and we aim to
understand the effects of the random forcing fully before introducing
further forcing terms. Further work could include this term as an
additional forcing, and investigate its possible effect on the zonal
flow.

We set the forcing strength to be Sy = 0.1®P¢/t so that the height
tendency is a constant fraction of the equilibrium geopotential. This
makes the forcing term non-dimensional as required, but means we
have to choose a specific value for the relevant fraction. Given the
idealized nature of our modelling, we choose an order of magnitude
value. Using a forcing of 0.1$/t produces appropriate perturba-
tions that are on the order of the equilibrium geopotential height.
Using a larger value of 1.0dy/7 caused some of the simulations to
become unstable, as the perturbations can become larger than the
thickness of the modelled layer.

global

lofdl.noaa.gov/fms
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Using a smaller value (not shown) produced circulation regimes
that were identical or qualitatively similar to the regimes we identify
in Section 6, apart from their absolute magnitude, indicating that the
responses vary approximately linearly with forcing. In Section 6, we
focus mainly on the non-dimensional morphology of the circulation
regimes, so the absolute magnitude of the perturbations is not crucial
to our conclusions. In reality, the variations in atmospheric height in
our model, corresponding to variations in temperature in a 3D model,
could lead to significantly larger variations in flux due to the presence
or absence of clouds. We therefore suggest that while it would be
useful to explore the effect of the fractional forcing strength in future
work, it has a weaker effect on the circulation regimes than the key
parameters like rotation rate, radius, and so on, which we investigate
here via the non-dimensional parameters.

We set the length-scale of the storms r,; to be 2° of longitude
at the equator, the same as the lower resolution simulations in
Showman (2007). If we assume that the diameter of each storm
is twice this length-scale, each storm is resolved by about six grid
points. The length-scale of the storms r,; and their strength S, are
model parameters that we set constant, which are not included
in our later non-dimensionalization. We suggest that these are
reasonable assumptions, as we only need the storms to be much
smaller than any features of observable scale. For the forcing
strength, we need its order of magnitude to be large enough to
produce features of observable strength, and also to be small enough
to not produce unphysical features larger than the equilibrium
height.

The model then has five variable parameters left — equilibrium
geopotential @, rotation rate €2, radius a, radiative time-scale T,q,
and hyperdiffusion strength v. This leaves a 5D parameter space to
explore in our aim to determine how the circulation regimes of brown
dwarfs depend on their properties. In the next section, we describe
how we reduce this to two parameters by non-dimensionalizing the
model.

3.2 Non-dimensional model

We can non-dimensionalize equations (5) by substituting in the
following non-dimensional variables:

d\) = q>/q>0 = ZSZq;Ua’
(@.9) = (i ). )
t =2Qt,
A= f
2Q°

Circumflexes denote non-dimensional parameters. All of the time-
scales t are non-dimensionalized in the same way as the time 7. The
scale of the geopotential &y = 2Qupa is derived by assuming thermal
wind balance (Mitchell & Vallis 2010). If we also non-dimensionalize
the spatial derivatives with a, this leads to the following non-
dimensional equations:

2+ Ror - Vil + V(&) + fkx =0
%-FROT{IV&): 17¢+$‘

Trad

(6)

where § = §/®y = §/ (£2,Ror). These equations then only de-
pend on the parameters:

Thermal Rossby Number : Rop = 58- = (232)2
Non-dimensional Radiative Time-scale : T = 2Qt (@)
Ekman Number : E} = 55

The thermal Rossby number measures the ratio of the inertial
force (due to the thermal wind) to the Coriolis force (due to
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rotation). The non-dimensional radiative time-scale compares the
radiative time-scale to the rotation rate of the atmosphere. The
Ekman number measures the strength of the hyperdiffusion, and
we set it to be constant so that the hyperdiffusion stabilizes the
model but does not affect the large-scale circulation. Given constant
E}, the non-dimensional model then only depends on Ror and 7.
The exact magnitude of the variables ®, u, and v depend on the
separate dimensional parameters such as a, but the morphology (the
circulation regime) will be identical given identical Ror and 7. This
means that the (Ror, T) parameter space contains the entire range
of behaviour possible in this model. We verified that simulations
with different dimensional parameters like @ and €2, but the same
Ror and 7, give identical results once all output variables are non-
dimensionalized.

3.3 Dimensional parameter space

Our non-dimensional (Ror, £) parameter space is determined by
the dimensional ranges of the rotation rate €2, radiative time-scale
7, and equilibrium geopotential ®,. In all the following estimates
we err on the side of a larger parameter space, to ensure that we
capture all the behaviour possible in our model. We assume that
the rotation rates are in the range 10~ s=! < @ < 1073 s7!
(Reiners & Basri 2008). We assume that the radius a is of the
order of 108 m. We can then estimate the plausible ranges of the
radiative time-scale 7.4 and equilibrium geopotential ®( from 2
and a. For 7., following Zhang & Showman (2014), we estimate

that:
p c )4

Trad ™~ —

g4oT?’

®

We assume that the brown dwarfs have a radiating level 10*
Pa (Showman 2007), gravity g from 500 to 3000 ms~2> (Burrows
et al. 2006), heat capacity c, = 14300 Jkg~' K=, and temperatures
varying from 100 to 2200 K (Zhang & Showman 2014). This gives
an upper bound on the radiative time-scale of 10° s, and a lower
bound of 10 s. However, we found that extremely short radiative
time-scales gave identical results as they were much shorter than
any other time-scale in the model (generally set by the range of
rotation rates). So we assume that our actual lower bound is 10°
s, giving a final range of dimensional radiative time-scales 10°
S < Trag < 10°s.

Next, we estimate the range of equilibrium geopotentials by
setting ®( such that it results in a Rossby deformation radius
Lg = /®o/f, equal to the deformation radius Lg = NH,/f ex-
pected from the vertical structure of a typical brown dwarf at-
mosphere (Zhang & Showman 2014). In this expression, H, =
R,T/11g is the pressure scale height and the Brunt—Viisili frequency
is:

N = [% (g/cp+ AT Jd]"* =g [y/ (c,T)]"*, ©)

where y = [1 + (c,/g)dT/dz] is determined by the vertical
temperature structure of the atmosphere. Zhang & Showman (2014)

estimate ¥ ~ 1 for a typical brown dwarf. Equating these two
expressions for Ly gives:

@y = (fLg)* = yk*c,T, (10)

where ¥ = R/uc, ~ 2/7. With a temperature range 100 K < T
< 2200 K, this gives a range of equilibrium geopotentials 10° m?
s72 < @y < 107 m? s~2. We follow Zhang & Showman (2014) in
expanding the upper bound of this to 10 to reflect the potential range
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of vertical wavelengths, giving a final range of 10° m? s™2 < ®; <
108 m? s~2.

3.4 Non-dimensional parameter space

Using the plausible ranges of dimensional parameters, we can
estimate the range of Rot and 7 that represents all plausible brown
dwarf circulation patterns in our model.

The non-dimensional radiative time-scale is T = 227, so the range
of rotation rates 107> s™! < © < 1073 s~! and the range of radiative
time-scales 10° s < T < 10° s give a range of non-dimensional
radiative time-scales 10! < # < 10°. The thermal Rossby number is
Rop = ®(/(2Qa)?, so the range of rotation rates 107> s™! < Q <
1073 s~!, the range of geopotentials 10° m”> s~ < ®; < 10% m? s72,
and a radius of the order of 10® m give a range of thermal Rossby
numbers 10~° < Roy < 102

To run a simulation with a particular combination of Rot and %,
we arbitrarily choose 2 = 107* and @ = 107. The non-dimensional
model output is independent of these choices. We choose the Ekman
number to be constant at £, = 10, which gives a weak enough
hyperdiffusion that our choice does affect the large-scale circulation,
so we do not need to vary this non-dimensional parameter.

As the non-dimensional radiative damping time-scale .4 iS our
parameter of interest, we set T, = £, = 20. This is because our only
requirement is that these time-scales are small compared to the other
time-scales (for example, our smallest non-dimensional radiative
time-scale is ., = 100), producing constant small-scale forcing.

For a brown dwarf with @ = 107, this corresponds to a dimen-
sional time-scale of 10° s, which is consistent with the estimated
range of convective time-scales used in Zhang & Showman (2014)
for a similar shallow-water model of a brown dwarf. In addition, it
is consistent with the roughly 10 h time-scale of the 1D radiative
feedback variability in Tan & Showman (2019). It is also the same
as the value used in Showman (2007) for a similar shallow-water
model of Jupiter and Saturn, which was motivated by observations.
It could be useful to investigate the effect of varying this time-scale
in future work, but we suggest that the effect will be weaker than the
parameters like rotation rate and radius, as long as the storm time-
scale is shorter than the other time-scales of the modelled system.

We then calculate ®( = Rop(2Qa)? and v = 2QE; and run each test
in our non-dimensional parameter ranges 10! < £ < 10®and 107> <
Ror < 10%, with a test at each order of magnitude on each axis. The
model runs with these dimensional parameters as inputs, and then
we divide all the output variables by their scales listed in Section 3.2
to retrieve the non-dimensional output. We spin up the model for
10000 Earth days, which in our non-dimensional parameter space
is more than twice as long the radiative time-scales of all the tests,
except the tests with ., = 10°. After this, we output data for 10
model days every 2 model hours (non-dimensionally, 13.75 rotations
outputting data every 0.115 rotations). The length of this data period
is chosen to include at least as many rotational periods as any current
observations, and the cadence is chosen to capture any of the large-
scale motions present in the atmospheres.

4 CIRCULATION RESULTS

In this section, we describe the results of the suite of simulations in
our non-dimensional parameter space. We show the instantaneous
height, potential vorticity, and zonal-mean zonal velocity as a
function of the non-dimensional parameter space.
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Figure 1. The instantaneous non-dimensional height field after 10 000 d in the parameter space of thermal Rossby number Rot versus non-dimensional radiative
time-scale T,g. The colour scale of each plot is normalized to the maximum deviation from the mean height of each simulation.

4.1 Height

Fig. 1 shows the instantaneous height field of each simulation. They
are all forced identically with small-scale storms but end up with very
different height fields due to their different circulation regimes, deter-
mined by the two non-dimensional parameters that define each test.

We can divide the height fields in Fig. 1 into four regimes. Tests
with a low Ror and a low 4 are relaxed very quickly back to a
state of uniform @, so have height fields either dominated by the
recent short-term small-scale forcing, or even height fields close
to uniformity. Section 6 will show that this is an extreme regime
unlikely to correspond to real brown dwarfs, but if these were real
their observational features would be dominated by the local radiative
properties of the atmosphere and large-scale atmospheric dynamics
would not be important.

Tests with a high Ror and a low 7,4 are also relaxed quickly
towards equilibrium, but still form strong large-scale atmospheric
dynamics. Energy is still injected at the small scale of the storms,
and then an inverse cascade transfers this energy to larger scales,
truncating at a relatively large scale due to the larger Rhines scale in
this regime (corresponding to low rotation rate, or high equilibrium
geopotential; Wang et al. 2018). These tests are not zonally uniform
as the radiative relaxation is still relatively fast compared to rotational
processes.

Tests with a low Ror and a high ., have little effect from
atmospheric dynamics, but have a relatively long radiative relaxation
time. They are dominated by the built-up random forcing as well as
medium-scale dynamical features such as equatorial jets and mid-
latitude waves. There is a mixture of zonally uniform features like
jets and non-uniform features like waves. For comparison, Jupiter
has roughly Rop = 1072 and f,,¢ = 10> (Showman 2007). In the

simulation in Fig. 1 with these non-dimensional parameters there is
amixture of large-scale waves and zonal bands corresponding to jets,
roughly matching the real large-scale morphology of Jupiter.

Tests with a high Ror and a high 7,4 transfer energy very
effectively to large scales, and have a relatively long radiative
relaxation time-scale so form very large, somewhat zonally uniform
features. This regime would result in brown dwarfs with strong zonal
flow.

4.2 Zonal-mean zonal velocity

Fig. 2 shows the instantaneous zonal-mean zonal velocity for our
parameter space. We have dimensionalized the model results to show
what the speed would be for a typical brown dwarf with a radius of
7 x 107 m and a rotation rate of 107* s~1.

In general, the tests with high 7,4 have strong jets and vice versa.
This is easily explained as the vortices introduced by the random
forcing are damped more strongly if 7,4 is low, so are suppressed
before they can form zonal jets via an inverse cascade of kinetic
energy to larger scales (Rhines 1975). In this effect, sufficiently large
B (the local meridional gradient of the Coriolis parameter f) leads
to an inverse transfer of energy from small scales to large-scale
features that are elongated zonally with a meridional width scale
(U/ 13)1/2'

Tests with high Ror have strong jets as the Rhines scale, at which
the inverse energy cascade terminates, approaches the planetary
scale. This is consistent with the results of Showman (2007), where
zonal jets do not form in shallow-water simulations with small
equilibrium geopotentials. Zhang & Showman (2014) also identified
this effect shallow-water simulations of brown dwarf atmospheres,

MNRAS 525, 150-163 (2023)
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Figure 2. The instantaneous dimensional zonal-mean zonal velocity after 10000 days in the parameter space of thermal Rossby number Rot versus non-
dimensional radiative time-scale 4. To give physical context for the non-dimensional velocities, we have dimensionalised the velocity to show what the speed
would be for a brown dwarf with a radius of 7 x 107m, and a rotation rate of 10~*s~!. The x-axis of each subplot is limited to a dimensional velocity of

1000ms ! in each direction.

showing a regime transition between jet-dominated and vortex-
dominated atmospheres. Showman (2007) points out that due to
the effect of latitude on the Rhines scale, there may be a latitude
below which the Rhines effect forms zonal jets, and above which
it is suppressed and vortices dominate. This may explain why
our tests with intermediate Ror have zonal jets at the equator
only.

4.3 Potential vorticity

Tan & Showman (2021a) found polar vortices in their 3D simulations
of brown dwarfs. Brueshaber et al. (2019) used a shallow-water
model to investigate the polar vortices of the giant planets of the
Solar system, which vary from single cyclones (Neptune, Uranus
and Saturn) to regularly spaced multiple vortices (Jupiter). The
similarities between the atmospheres of giant planets and brown
dwarfs suggests that polar vortices could be an important feature of
the atmospheres of brown dwarfs. We look for polar vortices in the
non-dimensional eddy potential vorticity (PV) Q. fields, defining
this quantity as the deviation from the mean PV, in the same way
as the results of the shallow-water models of Brueshaber et al.
(2019):

Q=0 —(0), (11)
where the PV is
_t+f

0= o (12)

MNRAS 525, 150-163 (2023)

where ¢ is the relative vorticity, fis the Coriolis parameter, and &
is the height. The mean PV is
f
Q)= ~. 13)
(h)
We then normalize the eddy PV like Brueshaber et al. (2019) to
define the non-dimensional quantity:

(h):{C+f f} (n)

0.=(Q—(0) (14)

e =T T wl 2w

which is plotted in Fig. 3, showing the instantaneous Q: of each
simulation, calculated with the windspharm code package (Dawson
2016). Tests with a low Ror or a low £,,4 either do not transfer energy
to large scales efficiently, or are relaxed towards equilibrium too fast
for polar vortices to form.

Tests with a high Ror and a high ,,4 can support long-term vortices
that migrate towards the pole, forming a large polar vortex. The polar
vortices in Fig. 1 are not exactly centred on the pole, migrating around
to some extent. Their close alignment with the rotation axis of the
brown dwarf means that they do not strongly affect the phase curve.
The suggestion of Apai et al. (2021) that polar vortices could explain
phase curve variability is unlikely if the vortices are located near the
pole like in our results, although polar vortices could still play an
important role in the atmosphere of the brown dwarf as a whole.

The formation and maintenance of polar vortices such as those on
Jupiter and Saturn is complex in both reality and models (Brueshaber
et al. 2019; Cai, Chan & Mayr 2021; Mitchell et al. 2021) and
our model cannot reproduce them exactly. The idealized model of
Showman (2007) did not reproduce the geometric pattern of vortices
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Figure 3. The instantaneous non-dimensional eddy potential vorticity field after 10000 days in the parameter space of thermal Rossby number Ror versus
non-dimensional radiative time-scale Tr,q. Each plot is centred on the north pole of the brown dwarf and the outer edge is 45°N. The colour scale of each plot is

normalized to the maximum absolute magnitude of the eddy potential vorticity of each simulation.

on Jupiter, so it is possible that brown dwarfs support polar vortices
that are too complex to be reproduced by our 2D model.

5 SIMULATED OBSERVATIONAL RESULTS

In this section, we plot simulated observations of our suite of
tests, showing their phase curves and the resulting periodograms.
Studies such as Allers et al. (2020) and Apai et al. (2017) have used
observations like these to estimate rotation periods, sizes of surface
features, and wind speeds.

5.1 Phase Curves

Our idealized model has no explicit radiative transfer, so we follow
Zhang & Showman (2014) and emulate the thermal phase curve by
inserting the height field in place of the outgoing flux. This assumes
that variations in height correspond to variations in temperature and
so determine the location and size of variations in outgoing thermal
flux. Our main concern is the size, position, and velocity of the
variations in height in the atmosphere, rather than their absolute
magnitude, so this approximation suits our purposes.

Our simplified approach assumes that the simulated thermal phase
curve corresponds entirely to emission from the stably stratified
layer represented by our shallow-water model. However, as discussed
above, thermal emission (particularly at near-infrared wavelengths)
is often thought to probe a photosphere partially or entirely in the
convective zone, below the weather layer (Morley et al. 2014a;
Burningham et al. 2017; Phillips et al. 2020). Specific bands can
probe lower pressures, such as the Spitzer 3.6um and 4.5 um channels
(Morley et al. 2014b; Yang et al. 2016), but may also be affected

by deeper convective layers. These phase curves should therefore
be thought of as a simplified model of the maximum observable
variability for a given circulation regime. The observations with
Spitzer described above would only partially (or not at all) probe
the simulated layer, so would show weaker variability. However, the
feature size and wind speeds implied by the variability would be
the same even if it only partially contributed to the total emission.
Observations in the mid-infrared with the MIRI instrument on JWST
will hopefully resolve this issue by measuring the thermal emission
from lower pressures (Tang et al. 2021).

With this caveat in mind, we use the height field in the following
expression for time-resolved flux F(¢) (Adams, Millholland &
Laughlin 2019):

F(t) = /‘/(éh(t)V(G, ¢)dode, (15)

where V(0, ¢) is the normal vector 7 to each cell at longitude and
latitude (6, ¢), resolved along the line of sight of the observer 7gp:

_ ﬂ'fobsvﬁ'fobszo
V= {0, Al Fops < 0, (16)

where the point (¢obs, Oobs) facing the observer is:

d)obs = —Qt

17
Oobs = €, ( )

where € is the viewing angle (0 is equator-on and 7/2 is pole-on).
Fig. 4 shows the phase curves with € = 0 over four rotations for
each of our simulations. We normalize each phase curve to fill the
y-axis of its plot as we are not primarily concerned with their absolute
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Figure 4. The phase curves in the parameter space of Ror versus non-dimensional radiative time-scale 7,4, calculated by using the height field in place of
an outgoing flux. The y-axis of each phase curve is scaled to fit its amplitude, as we are interested in the shapes and periods present instead of the absolute

amplitude. The actual amplitudes of each phase curve are shown later in Fig. 6.

magnitude. We later show the actual amplitude of each phase curve
in Fig. 6 as a fraction of the total emission.

Most of the phase curves have consistent form over the four orbits
shown here. This supports studies like Apai et al. (2017) that use
observations over a few days, or several rotations, of a brown dwarf.
Some of the phase curves vary from orbit to orbit; these are correlated
with the simulations with high Ror which have strong banded zonal
flows that traverse the circumference of the brown dwarfs on time-
scales comparable to their rotation. This means that features move
significant distances at different speeds or directions so the height
field changes notably from one rotation to the next.

Conversely, the simulations with low Rot have almost no mean
velocity so their features are largely stationary from one orbit to the
next. These simulations are still not purely sinusoidal, with regular
modulation to the sinusoidal variation every rotation. This is due to
spatially higher order features in the height fields shown in Fig. 1,
which will become clearer in the next section. Despite the averaging
inherent in the phase curve, there is a lot of dynamical variation in
their shapes, particularly in the upper left corner of Fig. 4 where
some of the simulated phase curves appear close to random noise.
In the next section we will show how calculating periodograms for
each simulation links their atmospheric dynamics to the form of their
phase curve.

5.2 Periodograms

This section shows the Lomb—Scargle periodograms corresponding
to the phase curves in Section 5.1 (Lomb 1976; Scargle 1982). We

MNRAS 525, 150-163 (2023)

could have used a Fourier power spectrum instead of a Lomb—Scargle
periodogram because we have uniformly sampled data, but chose to
use the latter as it is the method used in observational analyses (Apai
et al. 2017; Allers et al. 2020).

The periodograms show the frequencies present in each phase
curve. More specifically, they show the frequencies present in the
convolution in phase of the moving field viewed by the observer
with the time-dependent height field. This means that they are
a multiplication of the frequency of the rotation of the brown
dwarf with the spatial frequency of the surface height field and the
frequencies of the motion of its surface. This leads to several ways
in which the periodogram deviates from a single peak at the rotation
period of the brown dwarf.

The first source of additional peaks is higher order spatial
frequencies. A brown dwarf with a static sinusoidal variation in
height with wavenumber 1 in longitude will produce a single peak
in its periodogram at its rotation period. If the variation in height is
sinusoidal with wavenumber 2, the periodogram will have a single
peak at half its rotation period, potentially misrepresenting its true
rotation rate. Apai et al. (2017) measures periodograms with notable
additional peaks at half the dominant periods. In the same way, if
features composed of multiple wavenumbers are present, multiple
peaks will be present in the periodogram.

The second source of additional peaks is atmospheric motion. If
there is a single stationary spot in an otherwise uniform field, there
will be a dominant peak at the rotation period of the brown dwarf.
If a single spot is moving east or west (with or against the rotation
direction), the period of its modulation of the emission will be shifted
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Figure 5. The Lomb-Scargle periodograms for the phase curves in Fig. 4 in the parameter space of Ror versus non-dimensional radiative time-scale #;,q. The
periodograms are calculated using the full 13.75 rotations of the brown dwarfs (more than are plotted in Fig. 4). Vertical lines show the rotation period and
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Figure 6. The size of the dominant energy-containing length-scale (left) and the fractional phase curve amplitude (right) in each simulation. The amplitude
is the maximum minus the minimum of the phase curve, divided by its mean and expressed as a percentage. We set the dominant length-scale to be zero for
simulations with maximum dimensional geopotential perturbations of less than 1000 m? s~2 (assuming a radius of 7 x 107 m and a rotation rate of 10~* s~1),
as otherwise the analysis picks up negligible features. This cutoff means that we do not measure features in some of the plots in the bottom left corner of Fig. 1.

to shorter or longer periods respectively, according to:

P 1+ v -l
T\ P  2mrcos¢y

where P’ is the period of the moving feature, P is the rotation
period of the brown dwarf, v is the zonal velocity of the feature
(where positive is eastward), r is the radius, and ¢ is the latitude
of the moving feature. Moving second-order spatial features (with
periodogram peaks at half the rotation period of the brown dwarf)
will be shifted in the same way, leading to degeneracies in explaining
the source of shifted or additional peaks in the periodogram.

(13)

Fig. 5 shows the Lomb—Scargle periodograms for the phase curves
in Fig. 4, calculated using 13.75 rotations of the brown dwarfs. The
maximum of each periodogram is normalized to 1. The periodograms
with low Rop are dominated by a single peak at the rotation period
of the brown dwarf. Fig. 2 shows that these simulations have almost
no zonal-mean zonal velocity, and we found no other features with
significant motion. The peaks also have small amplitudes (not shown
relative to the other plots) due to their small perturbations in their
height field.

The simulations with intermediate Rop have larger half-period
peaks corresponding to wavenumber-2 spatial features. They also

MNRAS 525, 150-163 (2023)
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Figure 7. The maximum zonal-mean zonal wind speed in each simulation.
The simulations with large Rot and f;,q have faster maximum jets speeds.
The direction of these varies as shown in Fig. 7, with westward equatorial
jets for intermediate Rot and variable banded jets for high Ror.

have wider central peaks corresponding to zonal flows. The simu-
lations with large Ror have even wider peaks due to their banded
jets, and even have some separate peaks or main peaks totally shifted
away from their rotation period. For example, the simulation with
Ror = 10" and %4 = 107 has its strongest peak at about a 10
per cent longer period than its rotational period, which corresponds
to westward atmospheric motion of about 600ms~" at the equator
(or slower motion nearer the pole) according to equation (18). It
is more likely that shifts due to atmospheric motion correspond to
motion near the equator, given the weighting of the phase curve with
latitude—fast motion at the pole would produce a signal with very
small magnitude compared to equatorial features.

Overall, brown dwarfs with higher rotation rates, higher surface
gravity, small radii, and lower temperatures, are more likely to have
shifted or additional peaks in their periodograms due to stronger
atmospheric dynamics and large atmospheric features.

6 DISCUSSION

In this section, we identify four qualitative circulation regimes in our
parameter space and discuss their observational features. The regimes
are characterized by different feature sizes, phase curve amplitudes,
and zonal wind velocities.

6.1 Regime diagram

We can extract specific dimensional quantities from our simulations
and plot them as functions of the non-dimensional parameters. The
left-hand panel of Fig. 6 shows the size of the energy-containing
wavelength of each simulation in our parameter space (Schneider &
Walker 2006) calculated from the eddy kinetic energy spectrum
(Read et al. 2018). This quantifies the size of the dominant features
in Fig. 1 from their kinetic energy, confirming that simulations with
large Ror or long 7,4 have large features with sizes on the order
of 10°, while simulations with small Rot or short 7,4 have small
features of the order of 1°. Short f,,q strongly damps large features
towards equilibrium, leaving only the recent localized small-scale
forcing. Small Rot leads to weaker large-scale features due to its
effect on the Rhines scale, as discussed in Section 4.2.

The left-hand panel of Fig. 6 shows the fractional amplitude
(amplitude divided by mean value) of the phase curve in each
simulation. Simulations with low Ror and high 7,4 have phase curves
with high amplitudes, as they can support large-scale features that are

MNRAS 525, 150-163 (2023)

not damped rapidly towards equilibrium. Note that these fractional
amplitudes represent the maximum fractional amplitudes achievable
by observations of the weather layer only; as discussed above, obser-
vations of near-infrared wavelengths may probe photospheres mostly
below this layer. Observations of mid-infrared wavelengths with
JWST may be able to measure thermal emission from photospheres
that better correspond to our assumptions here.

These effects also govern the trends in zonal-mean zonal flow
speed in Fig. 7. This shows the maximum zonal-mean zonal speed
(east or west) of each simulation as a function of Rot and 7,q. The
tests with high Ror can cascade energy up to larger scales and form
zonal jets, but this process is suppressed for tests with low Ror, as
discussed previously. The tests with short ;.4 have weaker jets, again
due to the rapid damping of perturbations back towards the uniform
equilibrium geopotential field.

Fig. 8 is a schematic of the regimes that we identify based on all
of our plots so far. Regime 1 has strong banded jets in both the east
and west direction, as well as large vortices at various latitudes. This
produces large variations in the phase curve and multiple peaks in
the periodogram, broadening the main peak and even shifting it by
large amounts away from the internal rotation rate. Regime 2 has
strong westward equatorial jets and small vortices like the example
in fig. 1A in Zhang & Showman (2014), and the similar regimes in
Showman (2007), where strong zonal flow can only form on or near
the equator.

Regime 3, with low Ror, has no zonal jets and is dominated by
the small-scale short-term forcing that we inject. Brown dwarfs in
this regime would be characterized by constant-period phase curves,
with properties determined by their radiative behaviour. This regime
islike fig. 1B in Zhang & Showman (2014). Regime 4 is dominated by
large-scale polar vortices produced by the injected vortices migrating
to the poles and merging (Scott 2011). This circulation has little effect
on the phase curves as the large polar vortices are centred on the axis
of rotation.

6.2 Regime circulation

Figs 9, 10, 11, and 12 each show an example simulation from each
regime in more detail. Regime 1 in Fig. 9 has strong banded zonal jets
in both directions and has large planetary-scale vortices. It has a phase
curve with a period shifted to longer periods than the rotation period
by westward flowing height perturbations. As mentioned above, this
shift corresponds to westward atmospheric motion of about 600 ms ™"
at the equator or slower motion nearer the pole, according to equation
(18). It has a weak half-period peak due to the variety of scales in its
height perturbations. Its phase curve and periodogram are strongly
affected by its atmospheric motion, and the dominant peak in its
periodogram does not correspond to its actual rotation rate.

Regime 2 in Fig. 10 has a strong westward equatorial jet. This
jet does not produce a notable shift in the periodogram like the L-
dwarf does, because it is on the equator where the zonal temperature
gradients are very small. Its phase curve and periodogram are mainly
determined by the spatial frequencies in its height field. The strength
of the half-period peak could be used to assess the length-scales of
the average features.

Regime 3 in Fig. 11, with some possibility of large polar vortices
if longer wavelength modes are excited as described in Zhang &
Showman (2014). It has very small vortices due to its small
geopotential. Its periodogram is centered on its rotation rate and is
narrow. Its phase curve and periodogram do not depend strongly on its
atmospheric dynamics, and the dominant period in its periodogram
corresponds to its real rotation rate.
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Figure 8. Schematic showing four circulation regimes that we identify qualitatively from our results. Orthographic plots of the geopotential fields in Fig. 1 are
shown for several of the simulations, with the equator shown as a line and the pole marked as a point.
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Regime 4 in Fig. 11, with some possibility of large polar vortices
if longer wavelength modes are excited as described in Zhang &
Showman (2014). It has very small vortices due to its small
geopotential. Its periodogram is centered on its rotation rate and is
narrow. Its phase curve and periodogram do not depend strongly on its
atmospheric dynamics, and the dominant period in its periodogram
corresponds to its real rotation rate.

In each of Figs 9, 10, 11, and 12 we show periodograms calculated
with different numbers of rotations to demonstrate potential issues
with drawing observational conclusions from small numbers of
rotations. The black periodogram lines were calculated using 13.75
rotations as shown in the adjacent phase curve. The orange peri-
odogram lines were calculated using 4 rotations, shown as an orange-
dashed line in the adjacent phase curve. The orange lines are notably
broader and have different peak locations. This shows how a few
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Figure 11. Example of ‘Regime 3’, with Rot = 1073 and #,49 = 10°. From left to right, the plots show the instantaneous height field, instantaneous zonal-mean
zonal velocity field, phase curve over 13.75 rotations, and periodogram for 13.75 rotations (black line) and 4 rotations (orange line).
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Figure 12. Example of ‘Regime 4°, with Ror = 1073 and ;59 = 10°. From left to right, the plots show the instantaneous height field, instantaneous zonal-mean
zonal velocity field, phase curve over 13.75 rotations, and periodogram for 13.75 rotations (black line) and 4 rotations (orange line).

rotations may not be enough to accurately capture the atmospheric
rotation rate or the structure of banded jets on brown dwarfs, given
that deviations from the rotation period due to atmospheric motion
may only produce changes in the infrared phase curve period of a
few per cent.

We therefore urge caution about interpreting broad peaks as
evidence for banded jets. If the spread of periods suggested by
Apai et al. (2017) were to correspond to banded jets, this would
imply very strong velocities and velocity gradients. For example,
the spread of periods in their periodogram for their most rapidly
rotating brown dwarf implies eastward and westward velocities of
order 10 000 ms~!, which seems unrealistic in the light of the models
in our study and other studies like Zhang & Showman (2014) and
Tan & Showman (2021a). For relatively short periods of observation,
it is possible that broad peaks are due to limited information like in
Figs 9, 10, 11, and 12.

In general, we suggest that cooler brown dwarfs are likelier to
support the regimes with high 7,4, and hotter brown dwarfs are
likelier to support the regimes with low ,,q. This would lead us to
expect Y-dwarfs to have circulation patterns related to zonal jets and
polar vortices, L-dwarfs to have circulation patterns related to large-
scale mid-latitude vortices, and T-dwarfs a mixture of both patterns.

However, each of these regimes could occur on each of the different
spectral types of brown dwarf, due to their variety of parameters and
the simplifications we have made here. The equilibrium geopotential
parameter is especially uncertain, as a real 3D atmosphere can
support vertical modes of different wavelengths corresponding to
different deformation radii (Zhang & Showman 2014). Therefore,
each spectral type could correspond to a range of values of Ror
and so a large range of circulation regimes. Overall, these regimes
should be interpreted as an idealized representation of the non-
dimensional circulation patterns that are possible. It will be more
useful to match them to observational results rather than to use them
to predict observational results.

7 CONCLUSIONS

Observations of brown dwarfs show different types of variability,
which can be fitted with different atmospheric features. We set out
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to model the entire parameter space of an idealized 2D model of
a brown dwarf atmosphere, to describe its large-scale circulation
regimes. We aim for the regimes in this model to be useful for
interpreting time-resolved observations that need to be fitted with
atmospheric circulation features. These idealized results could be
used to guide more computationally expensive models that represent
three dimensions or include more realistic physics.

By non-dimensionalizing our model, we reduced its large input
parameter space to two non-dimensional parameters — the thermal
Rossby number Ror and the non-dimensional radiative time-scale
Trad- We ran simulations covering the possible parameter space of
these variables, defined by dimensional brown dwarf properties.
These revealed distinctive circulation regimes, as summarized in
Fig. 8:

(1) Regime 1 (high Ror), with planetary-scale, zonally homoge-
neous features and strong banded zonal-mean zonal jets.

(ii) Regime 2 (intermediate Ror), with medium-scale vortices and
strong westward equatorial jets.

(iii) Regime 3 (low Ror), with small-scale vortices determined
primarily by the radiative forcing and almost no large-scale atmo-
spheric dynamics.

(iv) Regime 4 (high Ror and high 7,4), dominated by polar
vortices and highly zonally uniform features.

These produced different time-resolved observations, with the
periods of phase curves shifted by zonal jets and broadened by
banded jets. Different regimes contained half-period peaks of varying
strength, produced by smaller scale features. The uncertainty in
the model parameters makes it difficult to predictively link these
regimes to specific types of brown dwarf. As they should define the
entire range of possible behaviour in the potential parameter space,
we suggest they could be useful for providing fittable features and
classification regimes for observational results.

We also showed that single large polar vortices, similar to those
on planets in the Solar system, can be present in brown dwarfs with
a large geopotential or a low rotation rate. These could be important
for the chemical or cloud composition of the objects, but would
not greatly affect their phase curves themselves due to their polar
position.
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Our conclusions in relation to previous observations with Spitzer
and HST were limited by the fact that these may have measured
thermal emission partially or entirely from pressures deeper than
the expected location of our simulated weather layer. The observed
variability in these phase curves implies some effect from a weather
layer with large-scale dynamics, but time-series observations with
the MIRI instrument on JWST will ultimately be required to measure
the relevant lower pressures directly.

We hope that this is a useful reference for observational studies,
to understand which atmospheric features are plausible on different
types of brown dwarf. Future work with the same model could look
at the formation mechanism for the jets, waves, and vortices in more
detail. It would also be useful to explore the effect of other parameters
like the strength, spatial scale, and time-scale of the forcing, and
to represent this in a less idealized way. More complex models
with three dimensions, or including the effect of clouds, would be
needed to simulate accurate observations for comparison with real
data. Future observations to test these regimes would benefit from a
high time resolution and a long observing period to resolve a high-
resolution periodogram.
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