
1. Introduction
Ensembles of subseasonal forecasts diverge due to chaotic noise and can be used to provide probabilities of 
different outcomes. In a chaotic system nearby trajectories rapidly separate and after 1–2 weeks the ensemble 
contains a wide variety of atmospheric conditions, implying an intrinsic limit of deterministic predictability in 
the midlatitudes (Lorenz, 1969; Selz et al., 2022). Beyond this timescale some ensemble members can produce 
“correct” forecasts, as demonstrated for example, in the lead up to the record-breaking heatwave in the UK during 
July 2022 (Holley & Lee, 2022), whilst other forecast members do not. In this study we investigate whether this 
is the result of unorganized chaotic noise throughout the forecast, or, whether specific perturbations can lead to 
a systematic and predictable impact on the forecast outcome. If systematic perturbations can be isolated, this 
information could improve our understanding of the atmosphere as well as real-time forecasts. We use the January 
2013 Sudden Stratospheric Warming (SSW) as a case study.

Skillful predictions of SSWs (Butler et al., 2017; Charlton & Polvani, 2007) are a major source of extended-range 
predictability for the northern hemisphere winter (Scaife et al., 2016) as they can affect surface conditions for 
the following 30–60 days (Baldwin & Dunkerton, 2001; Domeisen & Butler,  2020; Domeisen et  al.,  2020b; 
Kolstad et  al.,  2010). During an SSW the westerly polar stratospheric winds weaken and easterlies descend 
throughout the stratosphere (Baldwin et  al.,  2021). The deterministic lead time for predicting this reversal 
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is approximately 2  weeks (Butler et  al.,  2019; Domeisen et  al.,  2020a; Karpechko et  al.,  2018; Marshall & 
Scaife, 2010; Taguchi, 2020).

SSWs are driven by the rapid amplification and breaking of upward propagating Rossby waves (Baldwin 
et  al.,  2021; Matsuno,  1971) associated with both tropospheric wave activity (Bao et  al.,  2017; Garfinkel 
et  al.,  2010; Martius et  al.,  2009; Matsuno,  1971) and internal stratospheric conditions (Christiansen,  1999; 
Holton & Mass, 1976; Matthewman & Esler, 2011; Scaife & James, 2000). There can be a high sensitivity to 
stratospheric conditions when the tropospheric flow is constrained (de la Cámara et al., 2017), as well as a critical 
role from wave generation by extratropical cyclones (Cho et al., 2022). Historical analysis suggest at least one 
third of SSWs immediately follow anomalous tropospheric wave activity, with the longer-term accumulation of 
upward wave activity also important (Birner & Albers, 2017; de la Cámara et al., 2019; Polvani & Waugh, 2004). 
Understanding the roles of these different processes within subseasonal forecasts is an active area of research 
(Hitchcock et al., 2022).

Here we focus on the 2012–2013 major SSW (Butler et al., 2017). Following two pronounced decelerations in 
December the polar vortex zonal-mean zonal wind became easterly on 7 January. This event was associated with 
cold air outbreaks across Europe and North Asia during January 2013 (Liu & Zhang, 2014; Nath et al., 2016). 
Studies suggest that tropospheric precursors, including blocking and an explosively developing extratropical 
cyclone, and pre-conditioning of the stratosphere, played a role in its development (Attard et al., 2016; Coy & 
Pawson, 2015; Vargin & Medvedeva, 2015). A multi-model comparison indicates the SSW was predictable up 
to 2 weeks ahead, with the development of planetary wave activity in the troposphere being a key component 
(Tripathi et al., 2016).

We investigate if “correct” predictions of the event depend upon tropospheric perturbations at specific locations 
and lead times. We build on previous analyses using a large ensemble (200 members) initialized on 25 December 
2013 (13-day lead time) from a fully-coupled ocean-atmosphere operational prediction system (Section 2). We 
classify ensemble members based on deterministic criteria, that is, those which do and do not forecast the SSW 
onset date. Comparing these two subsets we identify physically coherent differences associated with the SSW 
(Section 3). To demonstrate causality we transplant conditions from one member into all other members and 
assess the resulting change in forecast probability and long-range prediction (Section 4). We explore regional 
sensitivity of transplanting in Section 4 and discuss the implications in Section 5.

2. Data Sets and Experimental Design
2.1. Data Sets

Observed windspeed, mean sea level pressure (MSLP) and temperature conditions during December 2012 
through to January 2013 were taken from the ERA5 reanalysis data set (Hersbach et al., 2020). Hourly data were 
extracted from https://cds.climate.copernicus.eu/ and bilinearly interpolated to the dynamical model grid.

Subseasonal forecasts are taken from the Met Office operational long-range prediction system GloSea (MacLachlan 
et al., 2015) with the GC3.2 configuration (Williams et al., 2018). It is a fully-coupled (ocean-atmosphere) global 
climate model with a resolution of approximately 60 km in the atmosphere and 0.25° in the ocean. Identical initial 
conditions are used and ensemble spread between members is generated by stochastic physics schemes, which 
aim to reflect uncertainties due to sub-grid processes (Sánchez et al., 2016).

2.2. Experimental Design

To explore causality of atmospheric perturbations we make use of a “transplant” function, allowing geographical 
sections of atmospheric fields for each model member to be independently modified. In this case atmospheric 
fields for specific regions are transplanted from a selected ensemble member into all others. Unlike nudging 
techniques (e.g., Jung et al., 2008; Maidens et al., 2019) there is no transition function or smoothing and the 
transplanting is performed at only one time step during the forecast, which then continues running without further 
intervention. We transplant zonal and meridional winds, density, humidity and potential temperature for model 
levels 1–47 (surface to approximately 100 hPa). Restricting the vertical extent to 200 hPa does not affect our 
findings.

The “control” ensemble comprises 200 members initialized on 25 December 0000z (13 days prior to the SSW) 
with a forecast period of 3 months. For additional experiments we transplant tropospheric conditions (see Section 3 
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below) from one member into all other 199 members at a specific forecast time and then allow the simulations 
to continue. Using conditions extracted from a member which correctly predicts the SSW forms the “SSWplus” 
ensemble. An identical setup with an ensemble member that does not predict the SSW forms the “SSWminus” 
ensemble. Importantly, as GloSea is bit-reproducible, the difference between these two 200-member ensembles 
and the control is solely due to the transplanting.

For each ensemble member we assess the deterministic skill of the SSW onset date. Specifically, we classify a 
“correct” forecast if the zonal mean zonal wind at 10 hPa and 60°N becomes negative (easterly) between 6 and 
12 January 2013. A stricter time window does not alter the conclusions of our study.

3. Perturbations Associated With “Correct” SSW Forecasts
Within the control ensemble 80 of the 200 ensemble members (40%) correctly predict the zonal mean zonal wind 
reversal at 10 hPa and 60°N (Figure 1a), 54 of which are within a stricter ±2 days window. In general, the model 
predicts the SSW onset to occur slightly later than seen in ERA5, although the onset date is within the ensemble 
spread.

In the lower and mid-troposphere, planetary wave-1 amplitudes (45–75°N) are found to be significantly larger 
approximately 7  days prior to the event in members with “correct” SSW forecasts (Figure  1b). This signal 
grows and propagates up into the stratosphere over several days, a time scale consistent with that of an upward 
propagating planetary-scale Rossby wave. This indicates that the perturbations which project positively onto 
the tropospheric wave-1 forcing may be linked to a systematic response in the ensemble. Geopotential height 

Figure 1. Differences between “correct” (n = 80) and “incorrect” (n = 120) forecasts initialized on 25 December 2012. (a) Zonal mean zonal wind at 10 hPa and 60°N 
(red = “correct,” blue = “incorrect”), the ERA5 reanalysis in black (gray indicates Sudden Stratospheric Warming onset date), and letters indicate timing of panels 
(c)–(f). (b) Difference in geopotential wave-1 amplitudes as a function of lead time. (c–) Differences in geopotential height at 200 hPa (z200). Ensemble mean (n = 200) 
z200 shown in gray contours. Stippling indicates significant differences (T-test, 95% confidence level). Black box in (c) is the chosen region for transplanting. Gray 
dashed contours in (c) show the 990 mb mean sea level pressure. Units are m for all except (a) m s −1.
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composites show this signal to be primarily located over the North Atlantic and Scandinavian region and not the 
North Pacific (not shown).

Within 24 hr of initialization we find little evidence of spatially coherent anomalies within the 80 SSW members 
(not shown). After 72  hr an extratropical cyclone develops in all members in the North Atlantic (Figure 1c, 
dashed gray contour) and undergoes explosive cyclogenesis (Sanders & Gyakum, 1980). The cyclone intensity 
is slightly deeper, but not significantly so, in “correct” ensemble members. However, the associated downstream 
high located over the United Kingdom is significantly enhanced and corresponds to a dipole structure in the 
developing upper-tropospheric ridge (Figure 1c). These composite differences are relatively small in magnitude 
(±5 m geopotential height at 200 hPa) and all members show similar synoptic conditions in absolute terms.

Over the next 2  days the ridge continues to strengthen and leads to upper-level anticyclonic wave-breaking 
(Figure 1d, gray contours). Ensemble members which predict the SSW show a greater reversal of tropospheric 
potential vorticity gradient over eastern Europe representing a significantly stronger wave breaking event 
(Figure 1d, shading). Following this, blocking over northern Russia and Scandinavia is enhanced and the zonal 
wind is reduced across northern Europe 6 days prior to the SSW. The geopotential height anomalies (Figure 1e, 
shading) correspond to significantly weaker upper-tropospheric winds in “correct” forecasts.

A Rossby wave propagating over North America enters the Atlantic basin and encounters the weakened flow 
around the 3 January 2013 (Vargin & Medvedeva, 2015). A ridge develops across the Atlantic sector (Figure 1f, 
gray contours) which is significantly stronger in “correct” members (Figure 1f, shading) and projects positively 
onto the tropospheric planetary wave-1 forcing (Figure 1b).

The deepening extra-tropical cyclone and North Atlantic blocking correspond well with previous analyses of this 
event, as well as tropospheric precursor locations for SSWs (Coy & Pawson, 2015; Garfinkel et al., 2010; Kolstad 
et al., 2010; Lee et al., 2019; Martius et al., 2009; Tripathi et al., 2016; Vargin & Medvedeva, 2015). However, 
these studies do not demonstrate causality, that is, if changing these features impacts the prediction of the SSW, 
which is our aim.

To test causality we focus on conditions 72 hr after initialization (Figure 1c, shading) and select the ensem-
ble member which exhibits the strongest 200 mb geopotential height dipole ([9°W–15°E, 43°N–49°N] minus 
[12°W–28°E, 60°N–68°N]). This member predicts the SSW onset on 8 January 2013 (1 day after the observed) 
and also exhibits the strongest spatial correlation with the ensemble composites shown in Figure  1c. The 
SSWplus experiment is generated by transplanting conditions (black box Figure 1c) from this member into all 
other 199 members at 0000z on 28 December 2012. All members are then restarted and continue without further 
modification.

The reverse experiment, SSWminus, is identical except that conditions are transplanted from the ensemble member 
with the weakest upper-level dipole and which does not predict the SSW. We select the strongest and weakest 
dipole members to help isolate the impact this pattern has on the ensemble. Importantly, the average magnitude 
of the transplanted anomalies across members (±25 m in 200 hPa geopotential height) is small compared to the 
model's climatological variability in this region (∼200 m, daily standard deviation from 1993 to 2016). We do not 
find any significant spurious features due to discontinuities at the boundaries of the transplanted region.

4. Results
4.1. Transplanting Perturbations Systematically Impacts SSW Forecasts

Remarkably, within the SSWplus ensemble the SSW forecast probability is significantly increased from 40% (in 
the control) up to 66.5%. In addition, the reverse experiment (SSWminus) significantly decreases the probability 
down to 27.5%. The probability of the SSW in the ensemble therefore depends systematically on the small pertur-
bations from the transplanted conditions (Figure 1c).

In terms of the polar vortex strength on 7 January 2013, the transplanting experiments are associated with a 
decrease (SSWplus) or increase (SSWminus) of approximately 5 m s −1 (Figure 2a). Furthermore, for all 200 
members the polar vortex is systematically weakened (negative wind anomalies) for at least 10 days following 
the transplanting (Figure 2b). These results demonstrate that small-magnitude perturbations 10 days prior to the 
event can systematically alter the polar vortex and tip the stratosphere toward a greatly increased likelihood of a 
sudden warming.
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The geopotential height wave amplitude anomalies (Figures 2c and 2d) show that the transplanting significantly 
affects the tropospheric flow. Planetary wave amplitudes are increased and propagate upwards into the strato-
sphere as seen within the control ensemble (Figure 1b), although now for wavenumbers 1 and 2. Significant 
differences are observed within the stratosphere directly after transplanting due to the model adjusting to the 
inserted tropospheric conditions. The primary signal however develops within the troposphere in which the anti-
cyclonic Rossby wave breaking on 30 December is strengthened (greater potential vorticity inversion), the zonal 
wind is reduced across northern Europe on 1 January, and enhanced ridging occurs over the North Atlantic. The 
impact of the transplanting aligns well with the dynamical mechanism identified within the control ensemble 
leading up to the SSW.

Performing identical experiments but restricting the vertical extent of the transplanting to ∼200 hPa, or extending 
it to include all model levels, did not alter the ensemble forecast further, indicating that for this region and event 
it appears to be primarily tropospheric perturbations which are key.

4.2. Influence on Subseasonal Predictions for January 2013

Analysis of the polar cap (60–90°N) geopotential height differences (SSWplus—SSWminus) show a rapid 
increase in high latitudes due to the increased number of members tipping into a sudden warming (Figure 3a). 
This signal persists for several weeks throughout January 2013.

Composite differences for the surface response during January 2013 (Figure  3b) show that the transplanting 
leads to significant increases in MSLP across the northernmost Atlantic and Arctic. The ensemble mean North 
Atlantic Oscillation (regional definition of Dunstone et al., 2016) is significantly reduced, in line with canonical 
SSW responses (e.g., Baldwin & Dunkerton, 2001; Bett et al., 2023; Hall et al., 2023; Kidston et al., 2015), 
and results in reduced MSLP forecast errors over Iceland and northern United Kingdom (Figure 3c). Forecast 
improvements are also seen across the Arctic and Eurasia, but not directly over the Atlantic indicating that the 
observed tropospheric coupling and regional influence is not fully captured, a limitation seen in other events and 
models (Karpechko et al., 2018).

Figure 2. Transplanting systematically impacts Sudden Stratospheric Warming (SSW) forecasts. (a) Polar vortex strength (zonal mean zonal wind at 10 hPa, 60°N) 
in the control, SSWplus and SSWminus ensembles on 7 January 2013. Solid lines indicate ensemble mean. Impact on polar vortex strength (b) due to transplanting 
for each member (SSWplus—SSWminus) and planetary wave amplitudes (45–75°N) for wave number 1 (c) and 2 (d). Stippling indicates significant differences (95% 
confidence level). Transplanting occurs on day 3 and the SSW day 13 (vertical black line in bcd). Units are m s −1 (ab) and m (cd).
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Large parts of the northern hemisphere also exhibit significant differences in forecast surface temperature 
(Figure 3d). In particular, the transplanting drives a dipole response with cooling (warming) across much of 
Europe and North Asia (South and East Asia). These are associated with reduced forecast errors (Figure 3e), 
suggesting that the cold conditions experienced were linked to the SSW, and that tipping more members into a 
sudden warming strengthens this signal.

We note that the zonal mean signal (Figure 3a) is generally weaker than expected when compared to other SSW 
events (Baldwin & Dunkerton, 2001; Karpechko et al., 2018). This is likely due to the overall weakened state of 
the polar vortex even in the SSWminus experiment. Thus the differences largely reflect a comparison between 
major and minor SSW forecasts. The large ensemble size helps to reduce noise, however we cannot completely 
rule out that the surface changes seen result from tropospheric dynamics. Nevertheless, the perturbations identi-
fied shortly after initialization in December 2012 lead to significantly different and improved surface predictions 
across much of the northern hemisphere for January 2013.

4.3. Regional Sensitivity of Transplanting Tropospheric Conditions

To understand the potential limit of the transplanting methodology we repeat the SSWplus experiment trans-
planting the whole tropical and northern hemisphere region (20°S–90°N). Tropospheric perturbations which 
could systematically influence the stratosphere over the 10-day lead time are expected to be located within this 
region, hence this experiment can be regarded as an “upper limit” test. Transplanting this large area significantly 
increases the SSW forecast probability from 40% in the control up to 82.5% (165 out of 200 members). The 

Figure 3. Impact of transplanting (SSWplus—SSWminus) on subseasonal predictions during January 2013. (a) Daily polar cap (60–90°N) geopotential height 
differences (m), (b) monthly mean sea level pressure (MSLP) (hPa), (c) monthly MSLP Root Mean Square Error (RMSE) difference (hPa), (c) monthly 2 m temperature 
(k), and (d) monthly 2 m temperature RMSE difference. Stippling indicates significant differences (95% confidence level). The lead-time dependent bias is removed.

 19448007, 2023, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106288 by T

est, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

KENT ET AL.

10.1029/2023GL106288

7 of 10

reverse experiment, based on SSWminus, decreases the probability to 11%. The North Atlantic transplant region 
in the SSWplus experiment therefore provides over half of the potential increase in SSW frequency but uses 
approximately 6% of the area.

To explore the geographic sensitivity of the transplanting we perform new experiments across the northern hemi-
sphere and define the Regional Importance Factor (RIF), for region, r, as

RIF� =
(

�� − �control

�upper − �control

)/(

��

�upper

)

 

where S is the number of “correct” ensemble members, A is the spatial area (km 2), and “control” and “upper” 
subscripts are the control and northern hemisphere experiment results. RIF relates the magnitude of any changes 
to that expected if the signal was evenly distributed across the northern hemisphere.

When repeating the transplant experiment independently for 8 approximately equal area regions (Figure 4) the 
North Atlantic sector exhibits a sensitivity approximately 10 times greater than that of other similar sized regions 
globally. The sensitivity increases to almost 10 when restricting the transplant region to that over the North 
Atlantic (dashed box, Figure 4). However, transplanting only one node of the dipole (i.e., upper or lower regions) 
did not produce a systematic response. A significant increase in SSW probability is observed when transplanting 
over the North Pacific, however, this is much smaller than the North Atlantic and the RIF is less than 1. These two 
regions exhibit significantly reduced forecast errors (compared with ERA5), suggesting they could be identified 
shortly after initialization, providing a new avenue for interpreting forecasts at times of heightened ensemble 
uncertainty. For all other regions (solid boxes, Figure 4) the SSW probability exhibits no systematic response 
despite some containing significant differences between “correct” and “incorrect” members.

5. Discussion and Conclusions
Tipping elements and bifurcations of the climate system are present in many contexts, but most commonly 
discussed in relation to a changing climate (Lenton et al., 2008). Here we have demonstrated their importance 
within subseasonal predictions and how they can be driven by small-magnitude regional perturbations. Our work 
extends empirical analyses of SSW forecasts (Karpechko et  al.,  2018; Kolstad et  al.,  2010; Lee et  al.,  2019; 
Tripathi et  al.,  2016) by presenting a methodology which can demonstrate causality of specific atmospheric 
features and their role in tipping the stratosphere into a sudden warming.

Figure 4. Regional sensitivity of transplanting on 28 December 2012. (a) Difference in z200 (m) between Sudden 
Stratospheric Warming (SSW) and non-SSW members within Control, stippling indicates significance at 95% confidence 
level. Solid black boxes show regional transplanting locations with Regional Importance Factor (RIF) score in lower left 
corner (* indicates significant change in SSW frequency). Dashed box represents SSWplus and SSWminus transplant 
locations.
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Focusing on the January 2013 SSW, with a lead time of 10  days, we identify perturbations over the North 
Atlantic which strengthen an anticyclonic Rossby wave breaking event and systematically change the probability 
of an SSW. In turn this impacts the long-range predictions for January 2013, significantly improving surface 
predictions across large parts of Eurasia. Our results show that tropospheric conditions exhibited a strong control 
during this event and highlights high sensitivity of sudden warmings to the strength, and not just occurrence, of 
tropospheric blocking events.

Given that the polar vortex is weakened leading up to the event, it is possible that any perturbations may effect 
the SSW probability. However, our results show a systematic influence. Transplanting from a correct forecast 
member significantly increased the SSW forecast probability, whilst the reverse experiment produced a significant 
decrease. The imposed perturbations physically relate to strengthening (or weakening) the dynamical mechanism 
associated with driving the SSW. Furthermore, in all 200 ensemble members there is a systematic weakening 
of the polar vortex for at least 10 days due to the transplanting (SSWplus—SSWminus). When increasing the 
SSW forecast probability, the sensitivity found in the North Atlantic region is order 10 times greater than other 
geographic areas. Finally, the identified signal aligns well with previously identified SSW precursors and relates 
to reduced forecast errors. These factors provide confidence of a systematic link with the SSW.

Interestingly, we find greater sensitivity to transplanting over the Atlantic than the Pacific despite both regions 
being important sources of planetary wave activity prior to SSWs (Martius et al., 2009). We speculate that this 
is due to two factors; (a) planetary waves 1 and 2 overlap constructively over the eastern North Atlantic & North 
Europe region, and (b) it is the area of largest ensemble spread at time of transplanting. Thus it can provide the 
largest relative differences between “correct” and “incorrect” forecasts and the subsequent blocking projects 
positively onto the planetary wave forcing. This potentially indicates a link between subseasonal predictions and 
so-called “predictability barriers” (González-Alemán et al., 2022; Sánchez et al., 2020). The method here allows 
identification of critical regional perturbations which may of course differ from event to event. A key research 
extension is therefore to explore the regional sensitivity for other SSWs.

In our experiments mesoscale (or smaller) perturbations could not systematically influence the SSW forecast 
probability. An additional investigation to find the specific source (e.g., grid cell) of the North Atlantic dipole 
perturbations also proved unsuccessful. At short lead times (<24 hr) differences between members exhibit consid-
erable noise, and transplanting mesoscale conditions had no effect on the ensemble's SSW prediction. Instead, 
a small (but significant) increase could be achieved by transplanting conditions over synoptic (or larger) scales. 
This provides further evidence that small-magnitude synoptic-scale perturbations can dominate over small-scale 
“butterflies” in terms of the ensemble spread and error growth (Durran & Gingrich, 2014; Durran & Weyn, 2016; 
Rodwell & Wernli, 2023).

We have demonstrated the power of large ensembles to identify spatially coherent perturbations shortly after 
initialization, which can significantly influence medium- and long-range forecasts, potentially providing addi-
tional skill at times of uncertainty. The results raise several interesting questions for future research, including 
how common such atmospheric features are across other events or lead times, to what extent other perturbations 
can influence forecasts of extreme events such as this, and how transplanting can be utilized to better understand 
and update ensemble forecasts prior to extreme events.

Data Availability Statement
The ERA5 reanalysis data is available through the Copernicus Climate Data Store (Hersbach et al., 2023). Model 
data utilized to create the figures are available via Zenodo (Kent, 2023).
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