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Abstract. Tropospheric and stratospheric tropical temperature trends in recent15

decades have been notoriously hard to simulate using climate models, notably in the16

upper troposphere. Aside from the warming trend itself, this has broader implications,17

e.g. atmospheric circulation trends depend on latitudinal temperature gradients. In18

this study, tropical temperature trends in the CMIP6 models are examined, from 197919

to 2014, and contrasted with trends from the RICH/RAOBCORE radiosondes, and20

the ERA5/5.1 reanalysis. As in earlier studies, we find considerable warming biases21

in the CMIP6 modeled trends, and we show that these biases are linked to biases in22

surface temperature (these models simulate an unrealistically large global warming).23

We also uncover previously undocumented biases in the lower-middle stratosphere: the24

CMIP6 models appear unable to capture the time evolution of stratospheric cooling,25

which is non-monotonic owing to the Montreal Protocol. Finally, using models with26

large ensembles, we show that their standard deviation in tropospheric temperature27

trends, which is due to internal variability alone, explains ∼50% (±20%) of that from28

the CMIP6 models.29
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1. Introduction32

Since the pioneering work of Manabe & Wetherald (1975) climate models have33

consistently shown greater warming in the tropical upper troposphere than near the34

surface in response to increased CO2 concentrations. This robust differential warming35

is understood to result from convection which, at low latitudes, tends to adjust the36

temperature profile to a moist adiabat (Manabe & Stouffer 1980, Santer et al. 2005). In37

this context, the first paper to analyze atmospheric temperature trends inferred from38

satellite-based microwave sounders (Spencer & Christy 1990) came as a great surprise,39

as it reported a lack of warming in the free troposphere over the decade 1979-1988,40

questioning the reliability of climate models and radiosonde observations. That study41

generated a great deal of controversy, giving rise to dozens of papers, and two expert42

panel reports. The reader is referred to Thorne et al. (2011) for the latest exhaustive,43

if not completely updated, review.44

In brief, soon after that controversial paper it became clear that both satellite and45

radiosonde derived temperature trends suffered from considerable biases (see, e.g. Karl46

et al. 2006). A large effort, therefore, has gone into producing “homogenized” data sets,47

from which instrumental artifacts are carefully and methodically removed. Nonetheless,48

much uncertainty remains as to the vertical structure of the observed temperature trends49

in the free-atmosphere since 1979, notably in the tropics. A more complete discussion50

can be found in the relevant section of the Fourth and Fifth Assessment Reports of the51

Intergovernmental Panel on Climate Change (IPCC, see Hegerl et al. 2007, Hartmann52

et al. 2013, respectively).53

In tandem with the effort to put the observed trends on more solid grounds, climate54

models have greatly evolved since the early IPCC assessment reports. In the last two55

decades, most state-of-the-art climate models discretize the atmosphere with dozens of56

vertical levels, have an accurate representation of the stratosphere, and are coupled to57

dynamic ocean, sea ice, and other components. In spite of these improvements, however,58

substantial discrepancies remain – between models and observations – in the vertical59

structure of atmospheric temperature trends in the tropics. For models participating in60

Phases 3 and 5 of the Coupled Model Inter-comparison Project (CMIP3 and CMIP5),61

these discrepancies have been reported in numerous papers (see, e.g., Fu et al. 2011,62

Po-Chedley & Fu 2012, Santer et al. 2013, 2017).63

In particular, it is worth recalling the findings of Mitchell et al. (2013), hereafter64

referred to as M13. While reporting a considerable discrepancy between radiosonde65

and modeled trends over the period 1979-2008, that study highlighted the fact that an66

important source of the discrepancy rested in the modeled surface warming, which was67

larger than the observed one. M13 showed that the discrepancy between models and68

observations is greatly reduced in the atmosphere-only CMIP5 model simulations, in69

which surface temperatures are prescribed from observations.70

Building on M13, the goal of this paper is to analyze the recently completed71

simulations performed under Phase 6 of the Coupled Model Inter-comparison Project72
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(CMIP6, Eyring et al. 2016), and to explore whether the tropical temperature trends73

in these models are closer to observations than those of the CMIP5 models. We also74

address two novel aspects of the problem. First, mindful that the trends in atmospheric75

concentrations of many ozone depleting substances has peaked shortly before the turn of76

the century (as a consequence of the Montreal Protocol), we separately compute trends77

before and after the year 1998, seeking to document the role of ozone depletion on78

atmospheric temperature trends. Second, in the spirit of Hawkins & Sutton (2009), we79

take advantage of large ensembles of individual CMIP6 model simulations (as opposed80

to a single run from each model), and seek to document what fraction of the large81

spread across the CMIP6 models can be attributed to internal atmospheric variability,82

as opposed to inter-model differences.83

2. Methods84

To report the observed atmospheric temperature trends, we make use of three85

different data sets: two radiosonde data sets, the Radiosonde Innovation Composite86

Homogenization (RICH, v1.5) and the RAdiosone OBservation COrrection using87

REanalyses (RAOBCORE, v1.5) products (Haimberger 2007, Haimberger et al. 2012),88

and one reanalysis data set, ERA5 (Hersbach et al. 2020). Note that ERA5 assimilates89

the radiosonde data used here, as well as many other data sources. For simplicity,90

throughout this manuscript we will refer to these three data sets, collectively, as91

“the observations”, even though we are well aware that ERA5 is a reanalysis, with92

observations assimilated into an underlying model.93

The difference between the two radiosonde data sets resides in the procedures used94

for the homogenization; these are fully detailed in Haimberger et al. (2012). Both95

radiosonde data sets have been updated to cover the period 1979-2019, at a resolution96

of 10◦×10◦ in horizontal directions, and 13 levels extending from 850 hPa to 10 hPa in97

the vertical direction. While temperature data are available at monthly resolution, we98

here construct annual averages, with the proviso that if more than 3 months of data are99

missing at a grid point in a given year, we count the entire year as missing. We note100

that both radiosonde data sets have the same resolution, and the same missing data.101

Fig. S1 shows the coverage of available data at three of the pressure levels that we focus102

on in this study.103

The ERA5 data set is a high resolution reanalysis produced by the European Centre104

for Medium-Range Weather Forecasts (Hersbach et al. 2020). Its horizontal resolution105

is 0.28◦ (in both latitude and longitude), with data available on 137 pressure levels from106

the surface to 0.01 hPa. Since ERA5 is at higher spatial resolution than the radiosonde107

data, we regrid it to the same resolution as the radiosondes using bilinear interpolation,108

and apply the same missing data mask used for the radiosondes. ERA5 data is available109

over the period 1979-2018; however, in this study, we substitute the years 2000-2006 with110

an updated product, ERA5.1. This is necessary as an error was identified in the original111

ERA5 lower stratospheric temperatures, due to an incorrect specification of the error112
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covariance matrix in the assimilation scheme (Simmons et al. 2020).113

The primary model data used in this study consists of the historical simulations114

performed under CMIP6, which extend from 1979-2014. As this period is common115

amongst all the data sources, we use it for the bulk of our analysis. CMIP6 represents116

the current state-of-the-art in climate modeling, so most of the participating modeling117

groups have provided output from fully comprehensive earth-system models. It is118

important to stress that the historical simulations analyzed here were performed under119

identical greenhouse gas (GHG), aerosol, and natural forcings (Eyring et al. 2016). As120

for ozone, some models use prescribed concentrations (Checa-Garcia et al. 2018), while121

others include interactive chemistry schemes. As in the case of the ERA5 data, we have122

regridded the model output to the lower resolution grid of the radiosonde data sets,123

and applied the same missing data mask. A few CMIP6 models have missing data in124

the lower atmosphere as they do not interpolate below the ground level which, in some125

mountainous regions, is higher than the lower atmospheric pressure levels.126

At the time of this writing, output from 48 models is available for the127

CMIP6 historical simulations, as listed in Table 1 (with ocean type ’C’). Unless128

otherwise specified, we take only the first ensemble member of each model as we use129

individual members as opposed to ensemble means for a like-with-like comparison with130

observations, and want to ensure equal weighting across the set of models. In addition131

to the atmosphere-ocean coupled simulations, we also make use of the atmosphere-only132

version of the historical CMIP6 simulations (see Table 1), which are forced with observed133

sea surface temperatures (SSTs). To put the CMIP6 models in the context of earlier134

intercomparisons, we also show results for the CMIP5 models (as listed in M13).135

To quantify the relative importance of the major forcings, we also make use of136

the model output produced by the Detection and Attribution Model Inter-comparison137

Project (DAMIP, Gillett et al. 2016). At this time a total of 7 models (listed in Table 1)138

have made available the single-forcing simulations that we analyze here. Specifically,139

these are the historical ‘GHG-only’ simulations, forced only with well-mixed greenhouse140

gases, the ‘aerosol-only’ simulations, forced only with aerosols (BC, OC, SO2, SO4,141

NOx, NH3, CO, NMVOC), and the ‘natural-only’ simulations, forced only with solar142

irradiance changes and volcanic aerosols.143

Finally, in order to quantify the contribution of internal variability to the spread144

across the CMIP6 models, we also analyse several “large ensembles” that were performed145

as part of the CMIP6 historical experiments. We define a large ensemble as having 20146

or more members: this allows us to analyze six different large ensembles (see Table 1),147

ranging in size from 20 (GISS-E2-1-H) to 50 members (CanESM5). Large ensembles148

are also available for models other than those analyzed here (Deser et al. 2020), but we149

have chosen to focus on the models that participated in CMIP6 to ensure all models150

forcings are the same in this study.151
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Model Ocean Type Single Forcings Large Ensemble
Size

ACCESS-CM2 C
ACCESS-ESM1-5 C/P
AWI-CM-1-1-MR C
BCC-CSM2-MR C/P GHG, AER, NAT
BCC-ESM1 C/P
CAMS-CSM1-0 C/P
CanESM5 C GHG, AER, NAT 50
CESM2 C/P
CESM2-FV2 C
CESM2-WACCM C/P
CESM2-WACCM-FV2 C
CIESM C
CNRM-CM6-1 C/P GHG, AER, NAT 29
CNRM-CM6-1-HR C/P
CNRM-ESM2-1 C/P
E3SM-1-0 C
E3SM-1-1 C
EC-Earth3 C/P
EC-Earth3-Veg C/P
FGOALS-f3-L C/P
FGOALS-g3 C
FIO-ESM-2-0 C/P
GFDL-CM4 C/P
GFDL-ESM4 C/P
GISS-E2-1-G C GHG, AER, NAT 27
GISS-E2-1-G-CC C
GISS-E2-1-H C 20
INM-CM4-8 C
INM-CM5-0 C
HadGEM3-GC31-LL C/P GHG, AER, NAT
HadGEM3-GC31-MM C/P
INM-CM4-8 C/P
INM-CM5-0 C/P
IPSL-CM6A-LR C/P GHG, AER, NAT 32
KACE-1-0-G C
MIROC6 C/P
MIROC-ES2L C
MPI-ESM-1-2-HAM C
MPI-ESM1-2-HR C/P
MPI-ESM1-2-LR C
MRI-ESM2-0 C/P GHG, AER, NAT
NESM3 C/P
NorCPM1 C/P 30
NorESM2-LM C/P
NorESM2-MM C
SAM0-UNICON C/P
TaiESM1 C
UKESM1-0-LL C/P

Table 1. The CMIP6 models analyzed in this study. C indicates models with a fully-

coupled dynamic ocean; P indicates atmosphere only models with prescribed SST; C/P

models for which both simulations are available. For the single forcing simulations,

GHG refers to greenhouse gas only forcings; AER refers to aerosol only forcings, and

NAT refers to natural only forcings (see Gillett et al. 2016, for details)

3. Analysis152

In light of the most recent advances in Earth-system modeling and of the improved153

observational data sets available, we begin by updating the result of M13, and present154

the vertical profile of zonal mean, annual mean temperature trend from 1979 to 2014. As155

shown in Fig. 1a, the overall trends consist of a cooling of the stratosphere and a warming156

of the troposphere, in both models and observations. This pattern is the well-known157

vertical “fingerprint” of anthropogenic forcings, originally reported by Tett et al. (1996)158

and Santer et al. (1996). In the stratosphere, the coupled CMIP6 models (red bars)159

show cooling trends comparable to the observed ones (black lines). In the troposphere,160

however, the models show considerably larger warming than in the observations.161

The warm trends bias in the models is seen throughout the entire troposphere, but is162
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greatest in the upper troposphere (peaking around 200 hPa), where the modeled trends163

are – on average – 4 to 5 times greater than the observations. We draw attention to the164

CanESM5 model: it simulates the greatest warming in the troposphere, roughly 7 times165

larger than the observed trends. We note this model is known to have a high climate166

sensitivity compared to others (Swart et al. 2019, Forster et al. 2019). Throughout the167

depth of the troposphere, not a single model realization overlaps all the observational168

estimates. However, there is some overlap between the RICH observations and the169

lowermost modelled trend, which corresponds to the NorCPM1 model.170

In M13, this considerable bias was attributed to the inability of the models to171

capture the observed sea surface temperature trends. The same applies to the CMIP6172

models, as demonstrated by fact that when the models are forced with prescribed SSTs173

(blue bars in Fig. 1a) their trends are much closer to the observed values. Nonetheless,174

one can still see a systematic bias at most tropospheric levels. Between 200 and 100 hPa175

the differences between the CMIP and AMIP simulations are even more visible. It is176

important to note that ERA5/5.1 is warmer than the radiosondes in that region; this177

is likely due to the assimilation of radio occultation data, which shows more warming178

in the upper troposphere than the radiosondes. As such, the discrepancy in this region179

may be smaller than reported in previous studies, and very possibly due to observational180

uncertainty, rather than model biases. A comparison with trends that extend to 2019181

is given in Figure S2, with no change in these conclusions.182

Now, turning our attention to lower stratospheric trends (100-20 hPa), one may be183

tempted to conclude – from Fig. 1a – that modeled and observed trends are in good184

agreement. The story, however, is more complex, and requires a more nuanced analysis.185

Recall that, unlike carbon dioxide which has been monotonically increasing since186

the pre-industrial era, ozone depleting substances, an important and often neglected187

anthropogenic forcing, exhibit a highly-nonlinear evolution from 1979 to 2014: the188

usefulness of a single linear trend covering the entire period, therefore, is questionable.189

The nonlinearity is due to the signing of the Montreal Protocol in 1989: as a consequence190

of that treaty, the atmospheric concentrations of many ozone depleting substances are191

no longer increasing. In fact, the trend in “effective equivalent stratospheric chlorine”192

(EESC, a commonly used metric for the combined concentration of ozone depleting193

substances) has changed from positive to negative around the very end of the 20th194

century.195

In view of this, following the latest Scientific Assessment of Ozone Depletion (WMO196

2018), we split the 1979-2014 period into two parts: the ozone depletion period 1979-197

1997 (during which EESC was increasing) and the ozone recovery period 1998-2014198

(during which EESC was in decline). Separate temperature trends for these two periods199

are shown in Figs. 1b and c, respectively. It must be emphasized that these two periods200

are relatively short (less than two decades): hence much caution is called for in any201

analysis and interpretation.202

Let us start by considering the observations. It is clear that the stratospheric203

cooling trends in the ozone-depletion period are greatly reduced in the ozone-recovery204
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Figure 1. Vertical profiles of tropical (20S-20N) temperature trends for the period

1979-2014. The black lines show the RICH1.5 and RAOBCORE1.5 radiosondes, and

ERA5/5.1 reanalysis. The red box-and-whisker bars show trends for ocean-atmosphere

coupled CMIP6 models (48 in total); the blue bars shows trends for CMIP6 models

with prescribed sea surface temperature (28 in total); the red bars are plotted at the

correct altitude, but the blue bars are slightly offset downwards to aid comparison;

each box shows the lower-to-upper quartile of the modeled trends, and the whiskers

show the full range of data up to 1.5 times the inter-quartile range away from the

mean, in which case the points beyond are represented by coloured crosses. The model

data and ERA5/5.1 data are masked with the same observational mask from RICH,

including the variation in time and pressure of the mask. Monthly data are averaged

to annual data; if more than 3 months of data are missing in any grid box in a given

year, all months for that year are set to missing. Panel a.), b.) and c.) show trends

from 1979-2014, 1979-1997 (ozone depletion era), and 1998-2014 (ozone recovery era),

respectively. The reanalysis line (solid black line) is constructed using ERA5 from

1979-2000, ERA5.1 from 2000-2006, and ERA5 from 2006-2014.

period. The RICH radiosonde data, in fact, indicates that stratospheric cooling trends205

have disappeared after 1998, although RAOBCORE and ERA5/5.1 still show a modest206

cooling. Results over this period are in agreement with the satellite observations, which207

show a completely flat temperature time series after 1996 in the lower stratospheric208

channel (the so-called MSU Channel 4), as reported in Mitchell (2016), Seidel et al.209

(2016). It has been proposed that the near disappearance of cooling trends in the210

lower stratosphere is a simple consequence of the fact that ozone depletion is no longer211

occurring (see, e.g., Fig. 3.21 of WMO 2018). Some studies have also pointed to a role212

for SSTs in recent tropical lower stratospheric temperature trends (e.g Shangguan et al.213

2019), although modelling results indicate that this effect is small (Polvani & Solomon214
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2012).215

Turning now to the modeled trends, Figs. 1b and c reveal a considerable discrepancy216

with the observations. In the stratosphere, the majority of CMIP6 models cool too little217

in the ozone depletion period when compared with RICH and ERA5, although there is218

good agreement with RAOBCORE. For the ozone recovery period the models all cool219

too much, with the inter-quartile range not encompassing any observational product,220

and the total range not encompassing RICH at all. We suspect that these temperature221

biases might be due to a poor representation of stratospheric ozone forcing in the CMIP6222

models. To this date, the methodology used to construct the ozone forcing for CMIP6223

remains undocumented in the peer-reviewed literature, although Checa-Garcia et al.224

(2018) have shown considerable uncertainty in the radiative forcing associated with225

ozone in the CMIP6 models. We have also not explored whether biases in stratospheric226

temperature trends are smaller for CMIP6 models with interactive ozone chemistry. It227

is also possible that the CMIP6 biases in stratospheric temperature trends stem from228

other sources, e.g. circulation changes that are inaccurately simulated in models (e.g.229

Garfinkel et al. 2013). We note, however, that models with a realistic simulation of230

stratospheric ozone, and a good vertical resolution in the stratosphere, are perfectly231

capable of reproducing the observed stratospheric trends between 100 and 20 hPa over232

both periods separately (see, e.g., Fig. A3 of Randel et al. 2017).233

It is also instructive to contrast the tropospheric temperature trends in the ozone-234

depletion and ozone recovery period. Forster et al. (2007) – on the basis of a purely235

radiative calculation with a fixed dynamical heating assumption – suggested that236

ozone depletion in the tropical stratosphere may lead to cooling in the tropical upper237

troposphere, due to a reduction in downwelling longwave radiation from the ozone238

above. However, using an atmospheric general circulation model with prescribed ozone239

concentrations, Polvani & Solomon (2012) showed that effects of stratospheric ozone240

depletion on tropical temperature trends do not extend much below the 100 hPa level.241

Given the observational uncertainties, it is difficult to discern a significant difference242

between Figs. 1b and 1c in the observed tropospheric trends.243

As for the modeled tropospheric trends, however, the discrepancy with observations244

is much larger after 1998. We suspect that one cause of this discrepancy is related to245

the fact that the 1998-2014 period corresponds to the occurrence of the so called “global246

warming hiatus” (see Fyfe et al. 2016, for a recent update of this debate). If the hiatus247

is indeed related to an increased heat uptake by the oceans, as suggested by some248

studies (Meehl et al. 2011, 2014), it cannot be considered an externally forced process:249

therefore, one would not expect it to be captured in the models over the same time250

period. Another contributing factor is that 1997/1998 had one of the largest El Niño251

events on record, which, given the short period the trend is calculated over, becomes252

important. Indeed, if the analysis is repeated for the 1999-2014 period (i.e. missing253

the large El Niño year), the tropospheric observational trends are higher, and in better254

agreement with the coupled model estimates (Figure S3). Be that as it may, we note255

here for the record that from 1998 to 2014, the CMIP5 models warm, on average 4 to256
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5 times faster than the observations, and in one model the warming is 10 times larger257

than the observations.258

Figure 2. Upper tropospheric biases (at 200 hPa) vs. near surface biases (at 850 hPa)

in the historical simulations of the coupled CMIP6 (red) and CMIP5 (blue) models.

The discrepancy (or bias) is defined as the 1979-2014 trend difference between each

model and the RICH v1.5 radiosonde value as the same level. The larger circles show

the CMIP5 and CMIP6 multi-model mean. CMIP5 data have had RCP4.5 simulations

added on to bring the end date to 2014.

To better quantify the relationship between the near surface and the upper259

tropospheric biases, which was already noted in M13, we illustrate their correlation in260

Fig. 2. For the CMIP6 models (red dots) the upper tropospheric (200 hPa) bias is very261

highly correlated with the near surface (850 hPa) bias, over 1979-2014: the Spearman262

correlation coefficient is r = 0.95. A similar number, r = 0.91, is calculated for the older263

CMIP5 models (blue), and the multi-model means are very close too. This indicates264

that there has not been any substantial improvement, in terms of tropical tropospheric265

temperature trends, between CMIP5 and CMIP6.266

Next, we examine the source of the large spread in tropical temperature trends267

across the CMIP6 models. In particular, we examine separately the forced response and268

the internal variability. Starting with the former, the impacts of the different forcings269

on tropical atmospheric temperature trends is studied by analyzing the single-forced270

experiments that have been carried out under the Detection and Attribution Model271

Inter-comparison Project (DAMIP, Gillett et al. 2016). Specifically, we make use of272

three separate experiments: the GHG-only simulations, the aerosol-only simulations,273
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and the natural-only simulations (for more details, see Section 2 of this paper, or Gillett274

et al. 2016).275

Figure 3. Percentage contribution of individual forcings to the total trend for the (top)

mid-lower stratosphere identified as the 30 hPa level, and (bottom) upper troposphere

identified as the 200 hPa level. Only a subset of CMIP6 models which include the

single forcing simulations are used (see Table 1). The bars represent the multi-model

mean contribution to the trend, normalized by the total trend in the historical (All

forcing) simulations; the grey bars are equal to 100%, by definition. The horizontal

black lines show the individual model spread of the ensemble means, again, normalized

by the gray bar. Positive/negative values represent warming/cooling.

In Fig. 3 we illustrate how single forcings contribute to the total modeled trends,276

in both the stratosphere (30 hPa, top panel) and upper troposphere (200 hPa, bottom277

panel). By definition, the total trend (gray bars) is equal to 100%. Recall that, owing to278

data availability, only a subset of the CMIP6 models in Fig. 1 are used for this analysis279

(see Table 1). The stratospheric cooling trend is dominated by the GHG forcings, but280

also with a sizable component coming from natural forcings, most likely a cooling trend281

from volcanic emissions. Stratospheric ozone is prescribed to a pre-industrial climatology282

in these single forcing simulations, so cooling from ozone depletion is only present in the283

all-forcing (i.e. historical) simulations, and cannot be separately estimated using these284
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specific DAMIP simulations.285

In the upper troposphere (Fig. 3, bottom panel) GHGs are the overwhelming driver286

of temperature trends, with negligible contributions from aerosols and natural forcings.287

For the aerosol forcing, we note that only one model (MRI-ESM2-0) shows warming, and288

this warming trend skews the results considerably, providing a large positive error bar.289

Without that one model, the aerosol cooling is more substantial at this height. Needless290

to say, the ensemble size (7) is relatively small, and we hope more models will soon291

become available. Also, we note that these single-forcing simulations are not expected292

to sum to 100%, i.e. the sum of the green, yellow and blue bars to equal the gray293

bar, because 1) other forcings may be important, e.g. tropospheric and stratospheric294

ozone, 2) there may exist some non-linear interactions between different forcings, and295

3) one cannot precisely estimate the forced signal with these DAMIP runs since a large296

ensemble of single-forcings simulations for each model is not available (the ensemble297

means would be estimates of the forced signal in each model). So, the results in Fig. 3298

are contaminated by internal variability.299

However, internal variability can be estimated by exploiting the fact that six CMIP6300

models have made available large ensembles of historical integrations (see Table 1). In301

each panel in Fig. 4 we plot the upper tropospheric vs. the near the surface temperature302

trends for two sets of runs: one set consists of the the first simulations of each of the303

48 different CMIP6 model (red dots), and the other set consists of all members of304

each of the 6 models with historical large ensembles (blue circles). The crosses of the305

corresponding colour indicate mean of each set, and the accompanying dashed lines show306

the accompanying linear regression. The observations are shown with black symbols.307

Two theoretical lines are also plotted in each panel in Fig. 4: the dry and moist308

adiabatic lapse rates (DALR and MALR, respectively), plotted as black lines. The309

MALR is computed using the following approximation (taken from Bakhshaii & Stull310

2013)311

dT

dp
=

(
1

p

)
RdT + Lvrs

cpd + L2
vrsε
RdT 2

(1)312

where cpd is the specific heat capacity for dry air at constant pressure, Rd is the gas313

constant for dry air, Lv is the latent heat of vaporisation, rs is the saturation mixing314

ratio, and ε = Rd/Rv is the ratio of ideal gas constants for dry air and water vapor.315

The MALR profiles are calculated by integrating this equation vertically, starting at316

850 hPa, and using T (850 hPa) = 291 K, which we take from the ERA5 reanalysis. The317

DALR is obtained from the same formula, setting rs = 0, which the reduces to more318

common dT/dz = g/cpd.319

Several interesting points should be noted in Fig. 4. First, there is a very strong320

correlation between the near surface and upper tropospheric trends, in all seven of321

the sets of models/ensembles: this confirms that the spread in upper tropospheric322

warming trends, in all cases, can be traced back to the spread in surface temperature.323

Second, the regression curves are close but not coincident with the theoretical moist324
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Figure 4. Regression between tropical (20S-20N) temperature trends (1979-2014) at

200 hPa and 850 hPa for the first historical simulation of each CMIP6 model (red dots)

and each of the 6 models with large ensembles of historical simulations (blue circles),

as well as 3 observationally-derived trends (black symbols). Crosses show ensemble

means. Linear least-squares regression lines are also shown for both sets, with the

corresponding R2 given in the legend. The black dashed and dot-dashed lines show

the relationships given by the moist and dry adiabatic lapse rates, respectively.

adiabatic line: this indicates that the popular idea that tropical temperature profiles325

follow moist adiabats may not be quantitatively correct at these levels, at least not for326

the temporal- spatial-averaged sea surface temperature response considered here. For327

instance, Flannaghan et al. (2014) show that tropical temperature trends only follow328

a moist adiabat once you appropriately weight the near surface temperature trends329

toward regions of deep convection, since it is the deep convecting regions that ultimately330

influence the upper troposphere. Third, contrasting the red dots and blue circles one331

gets the distinct impression that the spread across each large ensembles is comparable332

to the spread across the entire CMIP6 set. This is especially clear for CanESM5, which333

provided 50 distinct runs of the same model (panel a), and suggests that a large fraction334

of the CMIP6 spread may actually come from internal variability. Finally, we note that335

the means of the large ensembles (blue plus symbols), which represent the forced trends336

in each model, can be found at both ends of the CMIP6 range (red dots): contrast,337

for instance, panels a and f. This indicates that the spread in forced trends across the338

models can be almost as large as the range spanned by the CMIP6 models.339
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In order to more clearly illustrate this point, i.e. to quantitatively compare the340

spread of the entire vertical profile of temperature trends across both the CMIP6341

ensemble and the large ensembles, some thought is required. As seen in Fig. 4, the large342

ensembles have an average surface warming which is often different from the CMIP6 set.343

This implies that the lapse rates are higher for the large ensembles with higher surface344

warming than CMIP6, notably CanESM5, and lower for the large ensembles with lower345

surface warming (e.g. NorCPM1). Thus, some rescaling is needed for a meaningful346

comparison. Exploiting the tropospheric lapse rates across the large ensembles (the347

blue dashed lines in Fig. 4 panels a-f), we construct the relationship348

Tt(n, p) = α(p)Tt(n, 850 hPa) + c(p), (2)349

where Tt(n, p) is the temperature trend at level p for large ensemble member n, and350

the values of α(p) and c(p) are derived from linear regression across ensemble members351

at each level p. Above 200 hPa the regression is not strong, so we do not apply this352

trend scaling beyond that level. Now, to quantitatively compare the spread in trends353

across the large ensembles and across the CMIP6 ensemble, we scale the individual large354

ensemble members so that their ensemble mean, at 850 hPa, is the same as the CMIP6355

ensemble. The scaled trends T ′t(n, p) are defined by the expression:356

T ′t(n, p) = α(p)(Tt(n, 850 hPa−O) + c(z), (3)357

where O = 〈Tt(n, 850)〉Large−ensemble − 〈Tt(n, 850)〉CMIP6 is the difference between the358

ensemble means at 850 hPa.359

Fig. 5 shows the scaled spread, as per Eqn. 3, in the CMIP6 models (red) and each360

of the large ensembles (blue) for two different pressure surfaces. To be clear: the red361

boxes here are identical to those in Fig. 1a at 850 and 200 hPa. The mean trend for362

each large ensemble at 850 hPa is, by construction, identical to the mean of the CMIP6363

ensemble. The standard deviation of the scaled CanESM5 ensemble (lightest blue)364

encompasses ∼70% of the CMIP6 range, whereas for CNRM-CM6-1 (second lightest365

blue) it only encompasses ∼30%. All the other large ensembles are found somewhere366

between these extremes and, on average, the large ensembles explain ∼50% of the total367

CMIP6 variability. Note that the number of models (or ensemble members) in each368

spread is different. To test if this matters we repeat our analysis with only 20 samples369

for each of datasets (the lowest common denominator), but our results remain similar,370

and so we conclude there is little sensitivity to sample sizes greater than 20. Given this371

result, the clear indication here is that internal variability may be responsible for around372

50% of the CMIP6 standard deviation, at least for trends over intervals spanning 3-4373

decades (in our case, the trends are 35 years long). Finally, we note that while the large374

ensemble spreads are approximately Gaussian, the spread in CMIP6 models has a heavy375

upper tail, in line with the skewed range of climate sensitivities within this ensemble376

(Forster et al. 2019).377



14

Figure 5. A comparison of the spread in tropical temperature trends for the CMIP6

models (red) and individual large ensembles (blue) at two different pressure levels,

850 hPa and 200 hPa. Each shade of blue represents a different large ensemble.

From light-blue to dark-blue they are: CanESM5, CNRM-CM6-1, GISS-E2-1-G,

GISS-E2-1-H, IPSL-CM6A-LR and NorCPM1 (see Table 1). The large ensembles

have been scaled so as to be centered on the CMIP6 ensemble profile, see text for

details. The observations at these two levels are marked by a black cross (RICH), plus

(RAOBCORE) and circle (ERA5/5.1). Note that at 850 hPa RICH and RAOBCORE

overlap. The box-and-whiskers display the same statistics as in Figure 1.

4. Conclusions378

We have compared the modeled and observed tropical temperature trends, over the379

period 1979-2014, from 850 hPa to the mid-stratosphere. Focusing on the CMIP6380

models, we have confirmed the original findings of Mitchell et al. (2013): first, the381

modeled tropospheric trends are biased warm throughout the troposphere (and notably382

in the upper troposphere, around 200 hPa) and, second, that these biases can be linked383

to biases in surface warming. As such, we see no improvement between the CMIP5 and384
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the CMIP6 models.385

In addition, we have here uncovered substantial model biases in tropical386

stratospheric trends. From 100 to 20 hPa (the lower to middle stratosphere), the CMIP6387

models do not simulate the observed cooling during the ozone depletion period (1979-388

1997) compared with 2 of the 3 observational products used, and then simulate too389

much cooling in the ozone recovery period (1998-2014) compared with all observational390

products. Unfortunately, these biases cancel when one computes a single trend over391

the entire 1979-2014 period, giving the impression that the CMIP6 simulations of392

stratospheric temperature are accurate. We stress the importance of computing separate393

trends before and after the year 1998, which has become common practice in recent394

Ozone Assessment Reports (see, e.g. WMO 2018), as the forcing from ozone and395

halocarbons is not monotonic owing to the signing of the Montreal Protocol in 1989.396

Finally, analyzing six CMIP6 models which provided relatively large ensembles397

(from 20 to 50 members), we have been able to quantify the fraction of the CMIP6398

model spread due to internal variability, as opposed to model differences. We find that399

the standard deviation of the large ensembles, which is due to internal variability alone,400

is 30-70% of that of CMIP6 models for the period 1979-2014, with a central estimate401

of 50%. This result highlights the importance of using large ensembles when evaluating402

trend differences across the CMIP6 models.403
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Supplementary Information417

Figure S1. Percentage of months between 1979–2019 that RAOBCORE v1.5 data

are available in the tropics at 850, 200 and 30 hPa. All months in the years that have

more than 3 months of data missing are set to missing.
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Figure S2. As in Figure 1a but only showing the mean response of the CMIP6 models

(reds). The darker lines show the trend calculated from 1979-2019, and the lighted

lines show it calculated from 1979-2014 (as in the main body of the paper). CMIP6

historical data end in 2014, so SSP2RCP4.5 data are added to allow for trends to be

calculated to 2019. Note we do not currently have the ERA5 data for the latter part

of 2019, so it is excluded from this figure.

References418

Bakhshaii, A. & Stull, R. (2013), ‘Saturated pseudoadiabats – A noniterative419

approximation’, Journal of Applied Meteorology and Climatology 52(1), 5–15.420

Checa-Garcia, R., Hegglin, M. I., Kinnison, D., Plummer, D. A. & Shine, K. P. (2018),421

‘Historical tropospheric and stratospheric ozone radiative forcing using the cmip6422

database’, Geophysical Research Letters 45(7), 3264–3273.423

Deser, C., Lehner, F., Rodgers, K., Ault, T., Delworth, T., DiNezio, P., Fiore, A.,424

Frankignoul, C., Fyfe, J., Horton, D. et al. (2020), ‘Insights from earth system model425



REFERENCES 18

Figure S3. As in Figure 1a but with different trend averaging periods for panel b and

c.

initial-condition large ensembles and future prospects’, Nature Climate Change pp. 1–426

10.427

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. & Taylor,428

K. E. (2016), ‘Overview of the Coupled Model Intercomparison Project Phase 6429

(CMIP6): Experimental design and organization’, Geoscientific Model Development430

(Online) 9(LLNL-JRNL-736881).431

Flannaghan, T., Fueglistaler, S., Held, I. M., Po-Chedley, S., Wyman, B. & Zhao,432

M. (2014), ‘Tropical temperature trends in atmospheric general circulation model433

simulations and the impact of uncertainties in observed ssts’, Journal of Geophysical434

Research: Atmospheres 119(23), 13–327.435

Forster, P. M., Bodeker, G., Schofield, R., Solomon, S. & Thompson, D. (2007), ‘Effects436

of ozone cooling in the tropical lower stratosphere and upper troposphere’, Geophysical437

Research Letters 34(23).438

Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. (2019), ‘Latest climate439

models confirm need for urgent mitigation’, Nature Climate Change pp. 1–4.440

Fu, Q., Manabe, S. & Johanson, C. M. (2011), ‘On the warming in the tropical upper441

troposphere: Models versus observations’, Geophysical Research Letters 38(15).442

Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M.,443

Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y. et al. (2016), ‘Making sense of the444

early-2000s warming slowdown’, Nature Climate Change 6(3), 224.445



REFERENCES 19

Garfinkel, C. I., Waugh, D. W. & Gerber, E. P. (2013), ‘The effect of tropospheric446

jet latitude on coupling between the stratospheric polar vortex and the troposphere’,447

Journal of climate 26(6), 2077–2095.448

Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K.,449

Santer, B. D., Stone, D. & Tebaldi, C. (2016), ‘Detection and attribution model450

intercomparison project (damip)’, Geoscientific Model Development 9(10), 3685–3697.451

Haimberger, L. (2007), ‘Homogenization of radiosonde temperature time series using452

innovation statistics’, Journal of Climate 20(7), 1377–1403.453

Haimberger, L., Tavolato, C. & Sperka, S. (2012), ‘Homogenization of the global454

radiosonde temperature dataset through combined comparison with reanalysis455

background series and neighboring stations’, Journal of Climate 25(23), 8108–8131.456

Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L. V., Brönnimann, S.,457
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