
Figure 1. Schematic showing the physical processes over the North Atlantic Ocean during 
both phases of the Arctic Oscillation and the North Atlantic Oscillation. (Figure adapted from 
Greene, 2012, p 54.)
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Introduction
Extratropical cyclones (ETCs) are large-scale 
low-pressure systems that develop in the 
mid-latitude regions. These systems can 
travel thousands of kilometres and can last 
several days and are often, but not always, 
associated with high winds and heavy rain 
(Ulbrich et al.,  2009; Catto,  2018). The most 
powerful ETCs can cause significant socioec-
onomic damage, costing millions of pounds 
(Hawcroft et al.,  2012; Garnier et al.,  2018). 
For example, large storm surges associated 
with ETCs can cause loss of life through 
coastal flooding, while strong winds cause 
falling trees and debris, in addition to dis-
rupting transport systems and severely 
damaging property.

Cyclogenesis can occur in numerous ways, 
the most ubiquitous of which is baroclinic 
instability characterised by strong vertical 
wind shear in the mid-latitudes. This shear, 
in turn, results via thermal wind balance, 
due to strong temperature gradients. ETCs 
act to reduce this gradient through the 
polewards transport of latent and sensible 
heat. Consequently, if the gradient is small, 
there is less potential energy available for 
cyclogenesis. Decreased equator-to-pole 
temperature gradients in the lower tropo-
sphere, resulting from polar amplification 
(the increased rate of warming in higher 
latitudes compared to lower latitudes as a 
result of increasing concentrations of green-
house gases (Manabe and Wetherald, 1975)), 
are believed to be one reason behind the 
predicted decrease in ETC numbers for 
the Northern Hemisphere (NH) (Bengtsson 
et  al.,  2009; Catto et al.,  2011). In addition, 
the increase in temperatures would enhance 
latent heat release and is thought to con-
tribute to the deepening and intensification 

The numerous approaches to 
tracking extratropical cyclones 
and the challenges they present

Storm tracks are part of a very com-
plex coupled system with many different 
interacting components that can strongly 
influence an ETC’s location and intensity. 
Changes in the location of storm tracks, 
both latitudinally and zonally, have been 
linked to the subtropical jet, baroclinicity 
and extratropical sea-surface temperatures 
(Brayshaw et al.,  2009; 2011; Woollings et 
al.,  2010; Feser et al.,  2015). In addition, 
storm tracks respond to large-scale phe-
nomena such as the El Niño Southern 
Oscillation, the North Atlantic Oscillation 
(NAO), the Quasi-Biennial Oscillation and 
the Madden-Julian Oscillation (Ulbrich et 
al., 2009; Feser et al., 2015; Yang et al., 2015; 
Wang et al.,  2017, 2018). For example, 
Hurrell et  al.  (2003) illustrated how storm 
track activity and ETC intensity increase in 
regions of the North Atlantic Ocean during 
a positive NAO (Figure 1a). In addition, links 
have been identified between storm tracks 
and changes in the stratosphere during win-
ter (Kidston et al., 2015).

The changes in the position and inten-
sity of storm tracks will impact the local 
climate and weather over large distances 
(Bengtsson et al.,  2006). The North Atlantic 
jet stream is eddy driven and therefore con-
nected to the North Atlantic storm track. 
They both normally exhibit a similar south-
west–northeast orientation (Figure  1a), 

of ETCs (Bengtsson et  al.,  2006; Michaelis 
et al., 2017).

The pathways along which ETCs typi-
cally travel are known as storm tracks. 
Climatological storm-track regions are prev-
alent areas of synoptic-scale disturbances 
where, for example, there is a maximum 
polewards transport of energy occurring 
in the North Pacific and North Atlantic 
oceans in the NH (Blackmon,  1976; Booth 
et al.,  2017). In the Southern Hemisphere 
(SH), during summer, the storm track 
forms a circular pattern around Antarctica, 
which becomes more asymmetric in win-
ter (Hoskins and Hodges,  2005; Ulbrich 
et  al.,  2009). During winter, baroclinicity is 
at a maximum in both the Pacific and North 
Atlantic Ocean basins (Nakamura,  1992; 
Hoskins and Hodges,  2019). In terms of 
baroclinic wave activity, the North Atlantic 
storm track reaches maximum intensity 
during winter, whereas the Pacific storm 
track has a mid-winter minimum (due 
to the especially strong jet stream), with 
maximum intensity occurring during late 
autumn and early spring (Nakamura, 1992). 
The SH storm track maximum intensity (i.e. 
strongest ETCs) also occurs during winter, 
with enhanced activity in the southern 
Atlantic and Indian Ocean regions (Hoskins 
and Hodges,  2005; Ulbrich et al.,  2009; 
Booth et al.,  2017).

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fwea.3861&domain=pdf&date_stamp=2020-11-20
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directing ETCs towards northern Europe 
(Woollings et  al.,  2010). On inter-seasonal 
timescales in the NH, the latitude of the 
North Atlantic and Pacific storm tracks move 
poleward in the summer, before returning 
equatorward in the winter (Hoskins and 
Hodges,  2019). Similarly, there is a pole-
ward shift of SH storm tracks during winter 
(Lehmann et  al.,  2014).

The multitude of various dynamics that 
can control storm track characteristics pre-
sents us with a significant challenge in how 
we measure and understand their impacts 
across our world. This has resulted in numer-
ous and diverse tracking methods; there-
fore, this paper aims to (1) give an overview 
of the methods used in identifying and 
tracking ETCs, (2) discuss the implications 
of using different definitions of extreme or 
intense, (3) give an overview of the current 
literature where studies have compared a 
range of ETC statistics using several data-
sets and methods and (4) compare two 
North Atlantic transitional ETC tracks using 
three methods. More emphasis has been 
placed on NH tracking results due to the 
greater availability of literature; however, 
research on the SH storm tracks is continu-
ally growing. The paper first describes the 
multiple methods used for identification. 
We then explore the obstacles in tracking 
identified systems through time and the 
different ways to overcome them, and the 
significance of using different definitions of 
extreme or intense. A review of the current 
literature where studies have compared a 
range of ETC statistics using several data-
sets and methods follows, illustrated by a 
case study of two strong ETCs in the North 
Atlantic.

ETC tracking
Identification
Each tracking algorithm has a set of known 
obstacles to overcome when trying to iden-
tify ETCs within the model and observa-
tional data. One such problem is that there 
is no universally agreed definition of what 
an ETC is or where its precise location is 
(Neu et al., 2013). It is agreed, however, that 
the number of ETCs is simply the number of 
identified ETCs in the data, ETC frequency is 
the number of ETCs in a defined area, and 
track density can be measured by count-
ing the number of storm tracks crossing a 
region through time (Ulbrich et al., 2009).

Before the identification and tracking of 
ETCs, many storm-tracking algorithms apply 
spatial filters, which remove the large spa-
tial scale or small-noise scale (Anderson 
et  al.,  2003; Zappa et al.,  2013; Feser 
et  al.,  2015; Massey,  2016). This allows ETCs 
to be more easily identified as extrema from 
larger-scale systems and removes any bias 
towards slower-moving systems (Hoskins 

and Hodges, 2002; Anderson et al., 2003). As 
there is no set standardised way to achieve 
this background removal, and some meth-
ods do not involve such a step, results can 
vary from one method to another.

Multiple climate variables can be used to 
identify an ETC’s position, including meridi-
onal winds (Booth et al.,  2017), relative 
vorticity (Hodges,  1995; Zappa et al.,  2013; 
Chang,  2017), eddy kinetic energy (Wang 
et al.,  2017), geopotential height (Raible 
et al.,  2008) and mean sea-level pressure 
(MSLP) (Hoskins and Hodges,  2002; Feser 
et al., 2015; Yang et al., 2015; Massey, 2016; 
Chang,  2017). The most frequent choice 
is to use either local minima in MSLP or 
maxima in vorticity at a single geopoten-
tial height or pressure level (in the mid–
lower troposphere) to identify an ETC and 
track that feature through time and space 
(Raible et  al.,  2008; Neu et al.,  2013; Lakkis 
et al., 2019).

The tracking algorithm by Hodges  (1994; 
1995; 1999) uses relative vorticity at 850hPa 
for the identification of ETCs and has fre-
quently been used in feature-tracking stud-
ies (Bengtsson et al.,  2006). Massey’s  (2012; 
2016) objective feature-tracking algorithm 
uses re-gridded minimum MSLP to iden-
tify ETCs at higher latitudes. Using these 
two different approaches in identification 
can lead to variations in the outputted 
storm track statistics. One reason for this 
is that results using MSLP represent the 
low-frequency, large-scale features of the 
atmosphere, whereas vorticity represents 
the high-frequency, small-scale features 
(Hoskins and Hodges,  2002, 2005; Neu 
et  al.,  2013). Vorticity is often reduced to 
a lower resolution to decrease the amount 
of noise (Hoskins and Hodges, 2002, 2005).

Tracking
There are two commonly used frame-
works for evaluating storm tracks in cli-
mate models: Eulerian and Lagrangian. 
The Eulerian method commonly uses a 
2–6-day bandpass filter to highlight syn-
optic timescale activity, which includes 
storm tracks (Blackmon,  1976; Hoskins and 
Hodges, 2002). Although this method com-
putes quick and simple statistics, it does 
not provide the level of detail about ETC 
characteristics, such as the number and 
intensity of ETCs, that are used to determine 
changes in ETC trends or impacts (Hoskins 
and Hodges,  2002; Anderson et  al.,  2003; 
Zappa et al.,  2013; Michaelis et al.,  2017). 
The Lagrangian method, however, involves 
the temporal and spatial tracking of an 
individual ETC, known as objective fea-
ture tracking (Hoskins and Hodges,  2002; 
Feser et  al.,  2015; Catto,  2016; Michaelis 
et  al.,  2017). Using tracking algorithms 
allows for the analysis of long-term trends 
and the lifecycle of ETCs, along with their 

speed and intensity (Feser et al., 2015). Most 
objective feature-tracking methods have 
two phases: the identification of an ETC and 
tracking the same system across multiple 
time-steps (Raible et al., 2008; Massey, 2016; 
Lakkis et al., 2019).

Once identified, an ETC must be tracked 
through time, giving rise to what is known 
as the correspondence problem. Tracking 
algorithms must be able to identify an ETC 
and then identify that same system in the 
following time-step. Neighbour point track-
ing uses a local maximum or minimum value 
of a climate variable and then tracks this 
point through time using a nearest-neigh-
bour model (Lakkis et al., 2019). Others use 
a cost function to improve smoothness and 
ensure that points match the same track 
(Hodges, 1994, 1995; Massey, 2012, 2016). In 
addition, methods implement various con-
straints to reduce the possibility of match-
ing errors (Hoskins and Hodges,  2002), for 
instance, setting a search radius based 
on the average speed of an ETC (Raible 
et al., 2008; Massey, 2016). Quite often, tracks 
are filtered so that features are only selected 
if the total track length exceeds 1000km 
and/or lasts longer than 24, 48 or even 
72 hours (Hoskins and Hodges,  2002, 2005; 
Hodges et al.,  2003; Bengtsson et al.,  2006; 
Raible et al.,  2008; Massey,  2012, 2016; Neu 
et al., 2013; Pinto et al., 2016). Filtering tracks 
help to provide some standardisation, which 
can be implemented across multiple studies 
(Neu et al., 2013; Grieger et al., 2018).

In addition to identifying and tracking 
an ETC through time, it is equally impor-
tant to ensure that it is accurately tracked 
through space. Issues that can be encoun-
tered include changes in latitude–longitude 
grid box sizes that decrease with increasing 
latitude (resolution discrepancy), leading to 
singularities at the poles. There are multi-
ple approaches to address these problems, 
ranging from spatial filters, truncating data 
at a certain wavenumber, re-gridding data 
and projecting it onto a different grid, all 
of which create unique tracking algorithms 
(Hodges,  1994; Hoskins and Hodges,  2002; 
Massey,  2012; Zappa et al.,  2013). Some 
of these methods can be computationally 
expensive, while others are limited to only 
being able to track ETCs one hemisphere 
at a time.

New identification and tracking tech-
niques are being created to capture more 
aspects of ETCs in climate models. Methods 
commonly identify ETCs as a minimum or 
maximum point within one level of data 
and track that point through time. However, 
ETCs have complex 3-dimensional features 
that extend through multiple levels in the 
atmosphere. Lakkis et al.  (2019) have cre-
ated a 4-dimensional (4D) feature-tracking 
algorithm that identifies and tracks ETCs 
across multiple levels in the atmosphere. 
They have adapted the method from 



Figure 2. The number of Northern Hemisphere (30°–90°N), winter (December, January and 
February) cyclones between 1989 and 2009, using 16 different tracking methods. Adapted from 
Table 2 in Neu et al.  (2013), with the addition of M23, representing the results from Massey’s  (2016) 
tracking algorithm. Grey dashed line represents the mean, with shading representing the primary 
variable used for identification – blue represents MSLP, red represents relative vorticity at 850hPa 
(VORT Z850), hatched represents MSLP and/or Laplacian of MSLP or vorticity (VORT), and green 
represents geopotential height at 850hPa (Z850). (Source: Neu et al., 2013.)
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Hodges  (1995), repeating the process of 
identifying and tracking an ETC using rela-
tive vorticity on multiple vertical levels and 
then stacking these results to create a 4D 
representation of the track.

All these different approaches to tracking 
can influence the calculation of ETC char-
acteristics and statistics (Feser et al.,  2015). 
It is important to note that each method 
has its limitations, and there is no ‘correct’ 
way to solve these issues. As a result, it is 
not advised to apply an algorithm without 
knowing its limitations.

Defining ‘extreme’
Just as there are many different climate 
variables used in identification, there are 
numerous methods of defining and classi-
fying what is an ‘extreme’, ‘strong’ or ‘intense’ 
ETC (Catto, 2016; Chang, 2017). Approaches 
can involve defining extreme in terms of 
passing a physical threshold, and others 
account for the physical damage caused 
by an ETC, whereas some combine these 
(Garnier et al., 2018). Lambert (1996, pp 21, 
320) defined an intense ETC as ‘the occur-
rence of a grid point value of MSLP less 
than or equal to 970mbar’. This threshold 
was used to ensure the exclusion of most 
ETCs, spurious lows and any low pres-
sures caused by high terrain. Alternatively, 
Zappa et al.  (2013) defined strong ETCs as 
exceeding the 90th percentile of maximum 
wind speed at 850hPa in the North Atlantic 
and European storm tracks. More recently, 
Chang  (2017) applied different definitions 
of extreme based on the exceedance of 
two set thresholds using variables such as 
MSLP, 850hPa relative vorticity and winds. 
Conversely, Grieger et al.  (2018) defined 
extreme as the top 500 most intense winter 
tracks when using minimum MSLP to meas-
ure intensity. To help reduce discrepancies 
between assigned intensities, it is common 
to use MSLP (Feser et al., 2015).

It is important to understand that differ-
ences may arise in trends when the defini-
tion of what represents an extreme ETC is 
not consistent. This is not only relevant for 
historic trends but also for future projections 
as numerous studies use different definitions 
of ETC intensities (Ulbrich et al., 2009; Zappa 
et al., 2013; Michaelis et al., 2017). Research by 
Ulbrich et al.  (2009) showed that the results 
of future hemispheric trends in extreme 
ETCs depended on how they were defined. 
A decrease in the number of extreme ETCs 
averaged over the whole NH was found when 
extreme was defined as being in the 99th 
percentile for the Laplacian of pressure, com-
pared to an increase when defined in terms 
of sea-level pressure. Zappa et al.  (2013) 
used a multi-model approach to investigate 
the North Atlantic ETC response to RCP4.5 
and RCP8.5 future climate scenarios using 
Hodges’ (1995; 1999) objective feature-track-

ing algorithm. They found a future basin-wide 
reduction in the number of strong ETCs dur-
ing winter. However, an increase in number 
and strength over the British Isles and central 
Europe was projected. In addition, Michaelis 
et al.  (2017) investigated the impact of cli-
mate change on the winter North Atlantic 
storm track and found an overall decrease 
in the number of strong ETCs in the North 
Atlantic when defining strong as passing a 
minimum threshold in the sea-level pressure 
field. Alternatively, in the SH, Chang  (2017) 
found that a significant increase in the fre-
quency of future extreme ETCs was not 
dependent on the definition used.

Comparing methods
Differences due to datasets and 
methods
There are differing results in climatological 
storm-track structures and densities and 
in historical and future trends. These may 
result from differences in the data used or 
differences in the methodology of tracking 
ETCs. Uncertainties regarding the dataset 
were identified by Hodges et al. (2003), who 
used several reanalysis datasets, together 
with Hodges’  (1999) tracking algorithm, 
to compare the representation of his-
torical storm tracks in both hemispheres. 
Differences between the reanalyses were 
greater in the SH, in regions of growth or 
decay, and were generally larger for weaker 
ETCs. Fewer observations in the SH generate 
a greater dependence on model results and 
consequently increase the uncertainty of 
historic trends (Hodges et al.,  2003; Ulbrich 
et al.,  2009). Raible et al.  (2008) compared 
NH ETC statistics between two reanalysis 
datasets for the period between 1961 and 
1990. Although results for extreme ETCs 
were in good agreement, the greatest dif-

ference was found during summer with 
additional discrepancies in the number 
and intensity of tracks in regions close to 
significant orography. In 2009, Ulbrich et al. 
reviewed various methods of identification 
and tracking using different reanalysis data-
sets for both hemispheres. They also found 
that most disagreements were for summer 
months, and there was a better agreement 
for intense ETCs. The differences when 
comparing reanalysis datasets were mostly 
related to the different spatial resolutions.

The role of uncertainties due to the 
tracking method was highlighted by Neu 
et al. (2013), who assessed 15 different track-
ing algorithms as part of an experiment set 
up by the international Intercomparison of 
MId LAtitude STorm diagnostics (IMILAST). 
The experiment was set up so that each 
tracking algorithm used the same dataset 
(ERA-Interim reanalysis) for the same period 
(1989–2009), at the same spatial (1.5° × 1.5°) 
and temporal resolution (6-hourly time-
steps). The largest differences between 
methods were for the number of ETC 
tracks. There was a larger spread of results 
in the NH and over continents than in 
the SH. Figure  2 shows the differences 
in the number of NH (30°–90°N) ETCs for 
December, January and February for each 
of the methods used, with additional results 
from Massey  (2016). These methods differ 
by more than 100%, with no well-defined 
grouping of results based on climate vari-
ables. However, there was more agreement 
in the number of winter ETCs identified in 
both hemispheres. Winter ETCs tend to be 
more intense and easier to identify and 
track, which is in agreement with Hoskins 
and Hodges (2002, 2005) and Ulbrich 
et  al.  (2009). Grieger et al.  (2018) used the 
same approach as Neu et al.  (2013) to fur-
ther understand the SH results. They found 
many similarities between methods, but like 



Figure 3. The National Hurricane Center (NHC) best track (red circles); the Modeling, Analysis and Prediction (MAP) Climatology of Midlatitude Storminess 
(MCMS) track (blue triangles); and the Massey (2016) track (black crosses) for Storm Ophelia, 16 October 2017 (a), and Storm Oscar, 3 November 2018 
(b). Each point is at 6-hourly intervals and the mean sea-level pressure from ERA5 reanalysis is plotted for the time-step indicated in each figure.

The num
erous approaches to tracking extratropical cyclones

339

W
eather – Novem

ber 2020, Vol. 75, No. 11

Neu et al. (2013), differences included varia-
tions in ETC numbers and intensity, with a 
greater agreement in intense ETC statistics.

As previously discussed, MSLP and rela-
tive vorticity are popular climate variables 
used in feature tracking. Differences in the 
location and number of tracks could be 
due to the choice of variable used (Raible 
et al., 2008). When using MSLP and 850hPa 
vorticity, Hoskins and Hodges (2005) found 
that the SH storm track was strongest dur-
ing winter. However, when using 250hPa 
vorticity (upper troposphere), maximum 
values occurred during summer. Vorticity 
and MSLP results agreed that the strong-
est ETCs occur in the southern Atlantic and 
Indian Ocean regions. In addition, Grieger 
et al.  (2018) found that vorticity identified 
a greater number of tracks in the SH than 
MSLP. This is a result of vorticity being more 
capable of identifying and tracking small-
scale features (Hoskins and Hodges,  2002; 
Neu et al., 2013; Grieger et al., 2018). It may 
be assumed that regions are dominated by 
small-scale systems when there are more 
ETCs identified by vorticity than MSLP.

There are many similarities between MSLP 
and vorticity tracks in the NH, except for 
regions such as the Mediterranean and at 
the beginning and end of tracks (Hoskins 
and Hodges,  2002). Pinto et  al.  (2016) 
discovered that ETC clustering in the 
North Atlantic and Europe compared well 
between multiple methods. However, there 
was less agreement around the initial and 
final positions of the storm tracks, with 
vorticity tracks being located further south 
than MSLP tracks. Conversely, Hewson and 
Neu (2015) stated that they could not group 
their results based on the climate variable 

used; rather, it was the variations in thresh-
old settings that were more significant.

Comparison of three methods 
on two North Atlantic transitional 
ETCs
To illustrate the variations that can occur 
when using different methods, two North 
Atlantic transitional ETCs, Ophelia (2017) 
and Oscar (2018), were tracked using three 
separate tracking methods (Figure  3). First, 
the National Hurricane Center (NHC) best 
track was obtained from its hurricane data-
base HURDAT2 (Landsea and Franklin,  2013). 
The NHC best tracks are created by collating 
all the observational data available, such as 
satellite and aircraft measurements, to sub-
jectively determine the location, intensity 
and size of tropical cyclones and their tracks. 
Second, the National Aeronautics and Space 
Administration (NASA) Modeling, Analysis 
and Prediction Climatology of Midlatitude 
Storminess (MCMS) tracking algorithm 
applied a closed contour method using MSLP 
minima from ERA-Interim to locate and track 
ETCs (Naud et al.,  2012). Finally, the Massey 
tracks were created by inputting 6-hourly 
MSLP data from ERA5 reanalysis (Hersbach 
et al.,  2020) into the Massey  (2016) storm-
tracking algorithm.

All the methods indicate a comparatively 
good agreement between the locations 
of the two tracks. There are apparent dis-
similarities, especially at the initial and final 
stages of the tracks. The most evident differ-
ence in Figure 3(a) is that the NHC best track 
begins much earlier, identifying Ophelia as 
a hurricane before it transitioned into an 

ETC. Despite the MCMS track beginning 
earlier than Massey, it diverges for a small 
section when compared to the other tracks. 
As Ophelia hits the British Isles, the differ-
ence between tracks decreases; however, 
they begin to separate towards the end 
of the tracks. All three tracks finish in dif-
ferent locations, with MCMS at a different 
time-step. Interestingly, the three methods 
demonstrate a closer agreement for Oscar’s 
track (Figure 3b). Once more, the largest dif-
ferences are at the beginning and end of 
the tracks, with the MCMS method identi-
fying and tracking Oscar before the NHC. 
Agreement between the tracks improves 
towards the latter half of the storm track. 
However, as highlighted by the arrow in 
Figure  3(b), there is a noticeable outlier in 
the Massey track. There is a closer agree-
ment between Massey and NHC regarding 
the location of dissipation than with MCMS, 
which extends the track northeastwards by 
another time-step.

Large differences between tracks can 
exist at the initial and final time-steps for 
a variety of reasons, one being that rela-
tive vorticity is more capable of identify-
ing a system at an earlier stage than MSLP 
(Hoskins and Hodges, 2002; Neu et al., 2013; 
Grieger et al.,  2018). Rantanen et al.  (2020) 
tracked Ophelia using Hodges’ TRACK algo-
rithm (1994; 1995) with input data from the 
Open Integrated Forecast System model 
and compared it to the NHC best track. 
TRACK identified Ophelia earlier than both 
MCMS and Massey and had a similar dissipa-
tion location as MCMS. This highlights that 
methods using vorticity and MSLP can pro-
duce a comparable track, with less similarity 
shown at either end of the tracks.
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Despite both MCMS and Massey using 
MSLP, they used different reanalyses, 
approaches and thresholds in identification 
and tracking. Figure  3 shows how changes 
in methods can paint a slightly different 
picture in terms of location of cyclogenesis 
and cyclolysis. Nevertheless, there is no 
‘right’ answer when analysing storm track 
statistics. While the NHC best track uses 
observations, it is restricted to the quality 
and quantity of the information available. 
The uncertainty over a cyclone’s position 
in the HURDAT2 dataset depended on its 
intensity and availability of aircraft measure-
ments (Landsea and Franklin, 2013).

Both Ophelia and Oscar completed extra-
tropical transition, in that they began as 
hurricanes and then transitioned to ETCs. 
Consequently, they represent stronger ETCs 
that are reasonably easier to track. Therefore, 
it is interesting that when Ophelia reached 
peak intensity in terms of minimum MSLP 
(Figure 3(a)), there was some disagreement 
in its location, even between the two MSLP 
methods.

Summary and conclusion
The diversity and complexity of tracking 
ETCs is increasing as new tracking meth-
ods are developed. There are now more 
approaches to identify and track an ETC and 
measure its intensity and lifetime. However, 
due to their complexity, it is extremely chal-
lenging to fully represent all types of ETCs in 
one single agreed-upon method. As a result, 
we propose that this diversity of methods 
may lead to a lack of consensus on how 
ETC trends have been in the past, which 
makes it even more difficult to agree on 
how their numbers, intensities and impacts 
will change in the future. The main conclu-
sions from this study are as follows:

• Despite many differences, there are 
some common features among meth-
ods that involve filtering tracks based 
on their duration and distance travelled.

• Differences in the definition of extreme 
ETCs have been shown to play an impor-
tant role as they can result in opposite 
signs of trends or not have any influ-
ence at all. Therefore, one must remain 
cautious when comparing results using 
different definitions of extreme.

• The use of different datasets has shown 
that the largest differences in ETC tracks 
exist in the SH, during summer, for 
weaker ETCs and in regions of growth 
or decay. Results for extreme ETCs are 
in greater agreement. New and updated 
reanalysis products are providing more 
accurate and realistic data, helping to 
improve ETC tracking results.

• The largest differences in tracking meth-
ods exist when examining the number 
of ETCs. In the NH, each method used 

in Neu et al. (2013) differs by more than 
100%, with no clear grouping based on 
the climate variable used (Figure  2). 
There is, however, more agreement for 
winter and intense ETC statistics than 
for summer and weaker statistics.

• The greatest differences between tracks 
when using MSLP or vorticity is towards 
the first and final time-steps. Vorticity 
can identify a higher number of ETCs 
due to its ability to track small-scale fea-
tures.

Each study has contributed new and sig-
nificant information that has helped in our 
growing understanding of these complex 
physical systems. Nevertheless, it is crucial to 
consider that using a different dataset or the 
same dataset on another tracking algorithm 
may produce significantly different results 
when examining trends in ETC statistics that 
use only one tracking method. Therefore, 
we agree that there is still a need to con-
tinue to compare storm-tracking methods 
(Raible et al., 2008; Ulbrich et al., 2009; Neu 
et al., 2013; Grieger et al., 2018).
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Introduction
Countries around the world face pressing 
social, environmental, political and eco-
nomic issues. Air quality transcends all of 
the above; poor air quality disproportion-
ally impacts minorities and those on a low 
income (Di et al., 2017), while contributing 
to 40 000 premature deaths and an eco-

nomic burden of £20 billion per year in the 
UK alone (Royal College of Physicians, 2016). 
As more than 50% of the world’s popula-
tion now resides in urban environments, it is 
these relatively small spatial areas in which 
the most acute pollution episodes are likely 
to have the largest impact on the greatest 
number of people.

The sources and profile of pollutants var-
ies greatly throughout the world. In the UK, 
the key pollutants driving adverse health 
outcomes are nitrogen dioxide (NO2) and 
fine particulate matter (PM2.5), with 64% 
of new paediatric asthma cases in urban 
centres attributed to elevated NO2 lev-
els (Achakulwisut et al., 2019). The pri-
mary source of NO2 in roadside locations 
originates from vehicle transport. Yearly 

net emissions data from road transport is 
freely available at 1-km resolution from the 
National Atmospheric Emissions Inventory 
(NAEI). However, this top-down approach 
loses the granularity of particular roads and 
junctions that are emission hotspots at dif-
ferent times of the day.

Measuring road traffic emissions of NO2 
at high spatial and temporal resolutions is 
costly and logistically challenging. In this 
study, we develop a cheaper and univer-
sally applicable methodology to infer road 
transport emissions at the resolution of an 
individual road. We utilise the vast amount 
of data generated by the widespread use 
of mapping products to better understand 
traffic flows on city roads. While the total 
number of vehicles on a busy road link is 
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